Solve for x
x=\frac{8}{15}\approx 0.533333333
Graph
Share
Copied to clipboard
\left(7x+2\right)\times 9=\left(3x+7\right)\times 6
Variable x cannot be equal to any of the values -\frac{7}{3},-\frac{2}{7} since division by zero is not defined. Multiply both sides of the equation by \left(3x+7\right)\left(7x+2\right), the least common multiple of 3x+7,7x+2.
63x+18=\left(3x+7\right)\times 6
Use the distributive property to multiply 7x+2 by 9.
63x+18=18x+42
Use the distributive property to multiply 3x+7 by 6.
63x+18-18x=42
Subtract 18x from both sides.
45x+18=42
Combine 63x and -18x to get 45x.
45x=42-18
Subtract 18 from both sides.
45x=24
Subtract 18 from 42 to get 24.
x=\frac{24}{45}
Divide both sides by 45.
x=\frac{8}{15}
Reduce the fraction \frac{24}{45} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}