Solve for y
y=\frac{80z+148}{27}
Solve for z
z=\frac{27y}{80}-\frac{37}{20}
Share
Copied to clipboard
\frac{9}{2}y=\frac{40z+74}{3}
The equation is in standard form.
\frac{\frac{9}{2}y}{\frac{9}{2}}=\frac{40z+74}{3\times \frac{9}{2}}
Divide both sides of the equation by \frac{9}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{40z+74}{3\times \frac{9}{2}}
Dividing by \frac{9}{2} undoes the multiplication by \frac{9}{2}.
y=\frac{80z+148}{27}
Divide \frac{40z+74}{3} by \frac{9}{2} by multiplying \frac{40z+74}{3} by the reciprocal of \frac{9}{2}.
\frac{40}{3}z+\frac{74}{3}=\frac{9}{2}y
Swap sides so that all variable terms are on the left hand side.
\frac{40}{3}z=\frac{9}{2}y-\frac{74}{3}
Subtract \frac{74}{3} from both sides.
\frac{40}{3}z=\frac{9y}{2}-\frac{74}{3}
The equation is in standard form.
\frac{\frac{40}{3}z}{\frac{40}{3}}=\frac{\frac{9y}{2}-\frac{74}{3}}{\frac{40}{3}}
Divide both sides of the equation by \frac{40}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
z=\frac{\frac{9y}{2}-\frac{74}{3}}{\frac{40}{3}}
Dividing by \frac{40}{3} undoes the multiplication by \frac{40}{3}.
z=\frac{27y}{80}-\frac{37}{20}
Divide \frac{9y}{2}-\frac{74}{3} by \frac{40}{3} by multiplying \frac{9y}{2}-\frac{74}{3} by the reciprocal of \frac{40}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}