Evaluate
-\frac{1}{2}=-0.5
Factor
-\frac{1}{2} = -0.5
Share
Copied to clipboard
\frac{9}{14}-\frac{11}{14}-\frac{5}{14}
Fraction \frac{-11}{14} can be rewritten as -\frac{11}{14} by extracting the negative sign.
\frac{9-11}{14}-\frac{5}{14}
Since \frac{9}{14} and \frac{11}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{-2}{14}-\frac{5}{14}
Subtract 11 from 9 to get -2.
-\frac{1}{7}-\frac{5}{14}
Reduce the fraction \frac{-2}{14} to lowest terms by extracting and canceling out 2.
-\frac{2}{14}-\frac{5}{14}
Least common multiple of 7 and 14 is 14. Convert -\frac{1}{7} and \frac{5}{14} to fractions with denominator 14.
\frac{-2-5}{14}
Since -\frac{2}{14} and \frac{5}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{-7}{14}
Subtract 5 from -2 to get -7.
-\frac{1}{2}
Reduce the fraction \frac{-7}{14} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}