Evaluate
\frac{93x}{40}-4
Expand
\frac{93x}{40}-4
Graph
Quiz
Polynomial
5 problems similar to:
\frac{ 8x-20 }{ 5 } + \frac{ 9x+40 }{ 8 } - \frac{ 4x+50 }{ 10 } =
Share
Copied to clipboard
\frac{8\left(8x-20\right)}{40}+\frac{5\left(9x+40\right)}{40}-\frac{4x+50}{10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 8 is 40. Multiply \frac{8x-20}{5} times \frac{8}{8}. Multiply \frac{9x+40}{8} times \frac{5}{5}.
\frac{8\left(8x-20\right)+5\left(9x+40\right)}{40}-\frac{4x+50}{10}
Since \frac{8\left(8x-20\right)}{40} and \frac{5\left(9x+40\right)}{40} have the same denominator, add them by adding their numerators.
\frac{64x-160+45x+200}{40}-\frac{4x+50}{10}
Do the multiplications in 8\left(8x-20\right)+5\left(9x+40\right).
\frac{109x+40}{40}-\frac{4x+50}{10}
Combine like terms in 64x-160+45x+200.
\frac{109x+40}{40}-\frac{4\left(4x+50\right)}{40}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 40 and 10 is 40. Multiply \frac{4x+50}{10} times \frac{4}{4}.
\frac{109x+40-4\left(4x+50\right)}{40}
Since \frac{109x+40}{40} and \frac{4\left(4x+50\right)}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{109x+40-16x-200}{40}
Do the multiplications in 109x+40-4\left(4x+50\right).
\frac{93x-160}{40}
Combine like terms in 109x+40-16x-200.
\frac{8\left(8x-20\right)}{40}+\frac{5\left(9x+40\right)}{40}-\frac{4x+50}{10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 8 is 40. Multiply \frac{8x-20}{5} times \frac{8}{8}. Multiply \frac{9x+40}{8} times \frac{5}{5}.
\frac{8\left(8x-20\right)+5\left(9x+40\right)}{40}-\frac{4x+50}{10}
Since \frac{8\left(8x-20\right)}{40} and \frac{5\left(9x+40\right)}{40} have the same denominator, add them by adding their numerators.
\frac{64x-160+45x+200}{40}-\frac{4x+50}{10}
Do the multiplications in 8\left(8x-20\right)+5\left(9x+40\right).
\frac{109x+40}{40}-\frac{4x+50}{10}
Combine like terms in 64x-160+45x+200.
\frac{109x+40}{40}-\frac{4\left(4x+50\right)}{40}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 40 and 10 is 40. Multiply \frac{4x+50}{10} times \frac{4}{4}.
\frac{109x+40-4\left(4x+50\right)}{40}
Since \frac{109x+40}{40} and \frac{4\left(4x+50\right)}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{109x+40-16x-200}{40}
Do the multiplications in 109x+40-4\left(4x+50\right).
\frac{93x-160}{40}
Combine like terms in 109x+40-16x-200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}