Evaluate
\frac{89}{26}\approx 3.423076923
Factor
\frac{89}{2 \cdot 13} = 3\frac{11}{26} = 3.423076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)89}\\\end{array}
Use the 1^{st} digit 8 from dividend 89
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)89}\\\end{array}
Since 8 is less than 26, use the next digit 9 from dividend 89 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)89}\\\end{array}
Use the 2^{nd} digit 9 from dividend 89
\begin{array}{l}\phantom{26)}03\phantom{4}\\26\overline{)89}\\\phantom{26)}\underline{\phantom{}78\phantom{}}\\\phantom{26)}11\\\end{array}
Find closest multiple of 26 to 89. We see that 3 \times 26 = 78 is the nearest. Now subtract 78 from 89 to get reminder 11. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }11
Since 11 is less than 26, stop the division. The reminder is 11. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}