Evaluate
\frac{17}{15}\approx 1.133333333
Factor
\frac{17}{3 \cdot 5} = 1\frac{2}{15} = 1.1333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{75)}\phantom{1}\\75\overline{)85}\\\end{array}
Use the 1^{st} digit 8 from dividend 85
\begin{array}{l}\phantom{75)}0\phantom{2}\\75\overline{)85}\\\end{array}
Since 8 is less than 75, use the next digit 5 from dividend 85 and add 0 to the quotient
\begin{array}{l}\phantom{75)}0\phantom{3}\\75\overline{)85}\\\end{array}
Use the 2^{nd} digit 5 from dividend 85
\begin{array}{l}\phantom{75)}01\phantom{4}\\75\overline{)85}\\\phantom{75)}\underline{\phantom{}75\phantom{}}\\\phantom{75)}10\\\end{array}
Find closest multiple of 75 to 85. We see that 1 \times 75 = 75 is the nearest. Now subtract 75 from 85 to get reminder 10. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }10
Since 10 is less than 75, stop the division. The reminder is 10. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}