Evaluate
\frac{85}{54}\approx 1.574074074
Factor
\frac{5 \cdot 17}{2 \cdot 3 ^ {3}} = 1\frac{31}{54} = 1.5740740740740742
Share
Copied to clipboard
\begin{array}{l}\phantom{54)}\phantom{1}\\54\overline{)85}\\\end{array}
Use the 1^{st} digit 8 from dividend 85
\begin{array}{l}\phantom{54)}0\phantom{2}\\54\overline{)85}\\\end{array}
Since 8 is less than 54, use the next digit 5 from dividend 85 and add 0 to the quotient
\begin{array}{l}\phantom{54)}0\phantom{3}\\54\overline{)85}\\\end{array}
Use the 2^{nd} digit 5 from dividend 85
\begin{array}{l}\phantom{54)}01\phantom{4}\\54\overline{)85}\\\phantom{54)}\underline{\phantom{}54\phantom{}}\\\phantom{54)}31\\\end{array}
Find closest multiple of 54 to 85. We see that 1 \times 54 = 54 is the nearest. Now subtract 54 from 85 to get reminder 31. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }31
Since 31 is less than 54, stop the division. The reminder is 31. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}