Evaluate
\frac{85}{48}\approx 1.770833333
Factor
\frac{5 \cdot 17}{2 ^ {4} \cdot 3} = 1\frac{37}{48} = 1.7708333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)85}\\\end{array}
Use the 1^{st} digit 8 from dividend 85
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)85}\\\end{array}
Since 8 is less than 48, use the next digit 5 from dividend 85 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)85}\\\end{array}
Use the 2^{nd} digit 5 from dividend 85
\begin{array}{l}\phantom{48)}01\phantom{4}\\48\overline{)85}\\\phantom{48)}\underline{\phantom{}48\phantom{}}\\\phantom{48)}37\\\end{array}
Find closest multiple of 48 to 85. We see that 1 \times 48 = 48 is the nearest. Now subtract 48 from 85 to get reminder 37. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }37
Since 37 is less than 48, stop the division. The reminder is 37. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}