Evaluate
\frac{42}{11}\approx 3.818181818
Factor
\frac{2 \cdot 3 \cdot 7}{11} = 3\frac{9}{11} = 3.8181818181818183
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)84}\\\end{array}
Use the 1^{st} digit 8 from dividend 84
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)84}\\\end{array}
Since 8 is less than 22, use the next digit 4 from dividend 84 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)84}\\\end{array}
Use the 2^{nd} digit 4 from dividend 84
\begin{array}{l}\phantom{22)}03\phantom{4}\\22\overline{)84}\\\phantom{22)}\underline{\phantom{}66\phantom{}}\\\phantom{22)}18\\\end{array}
Find closest multiple of 22 to 84. We see that 3 \times 22 = 66 is the nearest. Now subtract 66 from 84 to get reminder 18. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }18
Since 18 is less than 22, stop the division. The reminder is 18. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}