Evaluate
\frac{802}{99}\approx 8.101010101
Factor
\frac{2 \cdot 401}{3 ^ {2} \cdot 11} = 8\frac{10}{99} = 8.1010101010101
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)802}\\\end{array}
Use the 1^{st} digit 8 from dividend 802
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)802}\\\end{array}
Since 8 is less than 99, use the next digit 0 from dividend 802 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)802}\\\end{array}
Use the 2^{nd} digit 0 from dividend 802
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)802}\\\end{array}
Since 80 is less than 99, use the next digit 2 from dividend 802 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)802}\\\end{array}
Use the 3^{rd} digit 2 from dividend 802
\begin{array}{l}\phantom{99)}008\phantom{6}\\99\overline{)802}\\\phantom{99)}\underline{\phantom{}792\phantom{}}\\\phantom{99)9}10\\\end{array}
Find closest multiple of 99 to 802. We see that 8 \times 99 = 792 is the nearest. Now subtract 792 from 802 to get reminder 10. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }10
Since 10 is less than 99, stop the division. The reminder is 10. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}