Evaluate
-\frac{60}{97}-\frac{59}{97}i\approx -0.618556701-0.608247423i
Real Part
-\frac{60}{97} = -0.6185567010309279
Share
Copied to clipboard
\frac{\left(8+3i\right)\left(-9-4i\right)}{\left(-9+4i\right)\left(-9-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -9-4i.
\frac{\left(8+3i\right)\left(-9-4i\right)}{\left(-9\right)^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+3i\right)\left(-9-4i\right)}{97}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)i^{2}}{97}
Multiply complex numbers 8+3i and -9-4i like you multiply binomials.
\frac{8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)\left(-1\right)}{97}
By definition, i^{2} is -1.
\frac{-72-32i-27i+12}{97}
Do the multiplications in 8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)\left(-1\right).
\frac{-72+12+\left(-32-27\right)i}{97}
Combine the real and imaginary parts in -72-32i-27i+12.
\frac{-60-59i}{97}
Do the additions in -72+12+\left(-32-27\right)i.
-\frac{60}{97}-\frac{59}{97}i
Divide -60-59i by 97 to get -\frac{60}{97}-\frac{59}{97}i.
Re(\frac{\left(8+3i\right)\left(-9-4i\right)}{\left(-9+4i\right)\left(-9-4i\right)})
Multiply both numerator and denominator of \frac{8+3i}{-9+4i} by the complex conjugate of the denominator, -9-4i.
Re(\frac{\left(8+3i\right)\left(-9-4i\right)}{\left(-9\right)^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+3i\right)\left(-9-4i\right)}{97})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)i^{2}}{97})
Multiply complex numbers 8+3i and -9-4i like you multiply binomials.
Re(\frac{8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)\left(-1\right)}{97})
By definition, i^{2} is -1.
Re(\frac{-72-32i-27i+12}{97})
Do the multiplications in 8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)\left(-1\right).
Re(\frac{-72+12+\left(-32-27\right)i}{97})
Combine the real and imaginary parts in -72-32i-27i+12.
Re(\frac{-60-59i}{97})
Do the additions in -72+12+\left(-32-27\right)i.
Re(-\frac{60}{97}-\frac{59}{97}i)
Divide -60-59i by 97 to get -\frac{60}{97}-\frac{59}{97}i.
-\frac{60}{97}
The real part of -\frac{60}{97}-\frac{59}{97}i is -\frac{60}{97}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}