Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(8x^{2}+61x-24\right)\left(x^{2}-7x\right)}{\left(7x-49\right)\left(64x^{2}-9\right)}}{\frac{7x+56}{4x^{3}}}
Multiply \frac{8x^{2}+61x-24}{7x-49} times \frac{x^{2}-7x}{64x^{2}-9} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(8x^{2}+61x-24\right)\left(x^{2}-7x\right)\times 4x^{3}}{\left(7x-49\right)\left(64x^{2}-9\right)\left(7x+56\right)}
Divide \frac{\left(8x^{2}+61x-24\right)\left(x^{2}-7x\right)}{\left(7x-49\right)\left(64x^{2}-9\right)} by \frac{7x+56}{4x^{3}} by multiplying \frac{\left(8x^{2}+61x-24\right)\left(x^{2}-7x\right)}{\left(7x-49\right)\left(64x^{2}-9\right)} by the reciprocal of \frac{7x+56}{4x^{3}}.
\frac{4x\left(x-7\right)\left(8x-3\right)\left(x+8\right)x^{3}}{7^{2}\left(x-7\right)\left(8x-3\right)\left(x+8\right)\left(8x+3\right)}
Factor the expressions that are not already factored.
\frac{4xx^{3}}{7^{2}\left(8x+3\right)}
Cancel out \left(x-7\right)\left(8x-3\right)\left(x+8\right) in both numerator and denominator.
\frac{4x^{4}}{392x+147}
Expand the expression.
\frac{\frac{\left(8x^{2}+61x-24\right)\left(x^{2}-7x\right)}{\left(7x-49\right)\left(64x^{2}-9\right)}}{\frac{7x+56}{4x^{3}}}
Multiply \frac{8x^{2}+61x-24}{7x-49} times \frac{x^{2}-7x}{64x^{2}-9} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(8x^{2}+61x-24\right)\left(x^{2}-7x\right)\times 4x^{3}}{\left(7x-49\right)\left(64x^{2}-9\right)\left(7x+56\right)}
Divide \frac{\left(8x^{2}+61x-24\right)\left(x^{2}-7x\right)}{\left(7x-49\right)\left(64x^{2}-9\right)} by \frac{7x+56}{4x^{3}} by multiplying \frac{\left(8x^{2}+61x-24\right)\left(x^{2}-7x\right)}{\left(7x-49\right)\left(64x^{2}-9\right)} by the reciprocal of \frac{7x+56}{4x^{3}}.
\frac{4x\left(x-7\right)\left(8x-3\right)\left(x+8\right)x^{3}}{7^{2}\left(x-7\right)\left(8x-3\right)\left(x+8\right)\left(8x+3\right)}
Factor the expressions that are not already factored.
\frac{4xx^{3}}{7^{2}\left(8x+3\right)}
Cancel out \left(x-7\right)\left(8x-3\right)\left(x+8\right) in both numerator and denominator.
\frac{4x^{4}}{392x+147}
Expand the expression.