Evaluate
\frac{11}{6}\approx 1.833333333
Factor
\frac{11}{2 \cdot 3} = 1\frac{5}{6} = 1.8333333333333333
Share
Copied to clipboard
\frac{48}{90}+\frac{35}{90}+\frac{2}{15}+\frac{7}{9}
Least common multiple of 15 and 18 is 90. Convert \frac{8}{15} and \frac{7}{18} to fractions with denominator 90.
\frac{48+35}{90}+\frac{2}{15}+\frac{7}{9}
Since \frac{48}{90} and \frac{35}{90} have the same denominator, add them by adding their numerators.
\frac{83}{90}+\frac{2}{15}+\frac{7}{9}
Add 48 and 35 to get 83.
\frac{83}{90}+\frac{12}{90}+\frac{7}{9}
Least common multiple of 90 and 15 is 90. Convert \frac{83}{90} and \frac{2}{15} to fractions with denominator 90.
\frac{83+12}{90}+\frac{7}{9}
Since \frac{83}{90} and \frac{12}{90} have the same denominator, add them by adding their numerators.
\frac{95}{90}+\frac{7}{9}
Add 83 and 12 to get 95.
\frac{19}{18}+\frac{7}{9}
Reduce the fraction \frac{95}{90} to lowest terms by extracting and canceling out 5.
\frac{19}{18}+\frac{14}{18}
Least common multiple of 18 and 9 is 18. Convert \frac{19}{18} and \frac{7}{9} to fractions with denominator 18.
\frac{19+14}{18}
Since \frac{19}{18} and \frac{14}{18} have the same denominator, add them by adding their numerators.
\frac{33}{18}
Add 19 and 14 to get 33.
\frac{11}{6}
Reduce the fraction \frac{33}{18} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}