Evaluate
\frac{3940}{3}\approx 1313.333333333
Factor
\frac{2 ^ {2} \cdot 5 \cdot 197}{3} = 1313\frac{1}{3} = 1313.3333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)78800}\\\end{array}
Use the 1^{st} digit 7 from dividend 78800
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)78800}\\\end{array}
Since 7 is less than 60, use the next digit 8 from dividend 78800 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)78800}\\\end{array}
Use the 2^{nd} digit 8 from dividend 78800
\begin{array}{l}\phantom{60)}01\phantom{4}\\60\overline{)78800}\\\phantom{60)}\underline{\phantom{}60\phantom{999}}\\\phantom{60)}18\\\end{array}
Find closest multiple of 60 to 78. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 78 to get reminder 18. Add 1 to quotient.
\begin{array}{l}\phantom{60)}01\phantom{5}\\60\overline{)78800}\\\phantom{60)}\underline{\phantom{}60\phantom{999}}\\\phantom{60)}188\\\end{array}
Use the 3^{rd} digit 8 from dividend 78800
\begin{array}{l}\phantom{60)}013\phantom{6}\\60\overline{)78800}\\\phantom{60)}\underline{\phantom{}60\phantom{999}}\\\phantom{60)}188\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)99}8\\\end{array}
Find closest multiple of 60 to 188. We see that 3 \times 60 = 180 is the nearest. Now subtract 180 from 188 to get reminder 8. Add 3 to quotient.
\begin{array}{l}\phantom{60)}013\phantom{7}\\60\overline{)78800}\\\phantom{60)}\underline{\phantom{}60\phantom{999}}\\\phantom{60)}188\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)99}80\\\end{array}
Use the 4^{th} digit 0 from dividend 78800
\begin{array}{l}\phantom{60)}0131\phantom{8}\\60\overline{)78800}\\\phantom{60)}\underline{\phantom{}60\phantom{999}}\\\phantom{60)}188\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)99}80\\\phantom{60)}\underline{\phantom{99}60\phantom{9}}\\\phantom{60)99}20\\\end{array}
Find closest multiple of 60 to 80. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 80 to get reminder 20. Add 1 to quotient.
\begin{array}{l}\phantom{60)}0131\phantom{9}\\60\overline{)78800}\\\phantom{60)}\underline{\phantom{}60\phantom{999}}\\\phantom{60)}188\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)99}80\\\phantom{60)}\underline{\phantom{99}60\phantom{9}}\\\phantom{60)99}200\\\end{array}
Use the 5^{th} digit 0 from dividend 78800
\begin{array}{l}\phantom{60)}01313\phantom{10}\\60\overline{)78800}\\\phantom{60)}\underline{\phantom{}60\phantom{999}}\\\phantom{60)}188\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)99}80\\\phantom{60)}\underline{\phantom{99}60\phantom{9}}\\\phantom{60)99}200\\\phantom{60)}\underline{\phantom{99}180\phantom{}}\\\phantom{60)999}20\\\end{array}
Find closest multiple of 60 to 200. We see that 3 \times 60 = 180 is the nearest. Now subtract 180 from 200 to get reminder 20. Add 3 to quotient.
\text{Quotient: }1313 \text{Reminder: }20
Since 20 is less than 60, stop the division. The reminder is 20. The topmost line 01313 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1313.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}