Evaluate
\frac{788}{41}\approx 19.219512195
Factor
\frac{2 ^ {2} \cdot 197}{41} = 19\frac{9}{41} = 19.21951219512195
Share
Copied to clipboard
\begin{array}{l}\phantom{41)}\phantom{1}\\41\overline{)788}\\\end{array}
Use the 1^{st} digit 7 from dividend 788
\begin{array}{l}\phantom{41)}0\phantom{2}\\41\overline{)788}\\\end{array}
Since 7 is less than 41, use the next digit 8 from dividend 788 and add 0 to the quotient
\begin{array}{l}\phantom{41)}0\phantom{3}\\41\overline{)788}\\\end{array}
Use the 2^{nd} digit 8 from dividend 788
\begin{array}{l}\phantom{41)}01\phantom{4}\\41\overline{)788}\\\phantom{41)}\underline{\phantom{}41\phantom{9}}\\\phantom{41)}37\\\end{array}
Find closest multiple of 41 to 78. We see that 1 \times 41 = 41 is the nearest. Now subtract 41 from 78 to get reminder 37. Add 1 to quotient.
\begin{array}{l}\phantom{41)}01\phantom{5}\\41\overline{)788}\\\phantom{41)}\underline{\phantom{}41\phantom{9}}\\\phantom{41)}378\\\end{array}
Use the 3^{rd} digit 8 from dividend 788
\begin{array}{l}\phantom{41)}019\phantom{6}\\41\overline{)788}\\\phantom{41)}\underline{\phantom{}41\phantom{9}}\\\phantom{41)}378\\\phantom{41)}\underline{\phantom{}369\phantom{}}\\\phantom{41)99}9\\\end{array}
Find closest multiple of 41 to 378. We see that 9 \times 41 = 369 is the nearest. Now subtract 369 from 378 to get reminder 9. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }9
Since 9 is less than 41, stop the division. The reminder is 9. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}