Evaluate
\frac{492075}{32}=15377.34375
Factor
\frac{3 ^ {9} \cdot 5 ^ {2}}{2 ^ {5}} = 15377\frac{11}{32} = 15377.34375
Share
Copied to clipboard
\begin{array}{l}\phantom{512)}\phantom{1}\\512\overline{)7873200}\\\end{array}
Use the 1^{st} digit 7 from dividend 7873200
\begin{array}{l}\phantom{512)}0\phantom{2}\\512\overline{)7873200}\\\end{array}
Since 7 is less than 512, use the next digit 8 from dividend 7873200 and add 0 to the quotient
\begin{array}{l}\phantom{512)}0\phantom{3}\\512\overline{)7873200}\\\end{array}
Use the 2^{nd} digit 8 from dividend 7873200
\begin{array}{l}\phantom{512)}00\phantom{4}\\512\overline{)7873200}\\\end{array}
Since 78 is less than 512, use the next digit 7 from dividend 7873200 and add 0 to the quotient
\begin{array}{l}\phantom{512)}00\phantom{5}\\512\overline{)7873200}\\\end{array}
Use the 3^{rd} digit 7 from dividend 7873200
\begin{array}{l}\phantom{512)}001\phantom{6}\\512\overline{)7873200}\\\phantom{512)}\underline{\phantom{}512\phantom{9999}}\\\phantom{512)}275\\\end{array}
Find closest multiple of 512 to 787. We see that 1 \times 512 = 512 is the nearest. Now subtract 512 from 787 to get reminder 275. Add 1 to quotient.
\begin{array}{l}\phantom{512)}001\phantom{7}\\512\overline{)7873200}\\\phantom{512)}\underline{\phantom{}512\phantom{9999}}\\\phantom{512)}2753\\\end{array}
Use the 4^{th} digit 3 from dividend 7873200
\begin{array}{l}\phantom{512)}0015\phantom{8}\\512\overline{)7873200}\\\phantom{512)}\underline{\phantom{}512\phantom{9999}}\\\phantom{512)}2753\\\phantom{512)}\underline{\phantom{}2560\phantom{999}}\\\phantom{512)9}193\\\end{array}
Find closest multiple of 512 to 2753. We see that 5 \times 512 = 2560 is the nearest. Now subtract 2560 from 2753 to get reminder 193. Add 5 to quotient.
\begin{array}{l}\phantom{512)}0015\phantom{9}\\512\overline{)7873200}\\\phantom{512)}\underline{\phantom{}512\phantom{9999}}\\\phantom{512)}2753\\\phantom{512)}\underline{\phantom{}2560\phantom{999}}\\\phantom{512)9}1932\\\end{array}
Use the 5^{th} digit 2 from dividend 7873200
\begin{array}{l}\phantom{512)}00153\phantom{10}\\512\overline{)7873200}\\\phantom{512)}\underline{\phantom{}512\phantom{9999}}\\\phantom{512)}2753\\\phantom{512)}\underline{\phantom{}2560\phantom{999}}\\\phantom{512)9}1932\\\phantom{512)}\underline{\phantom{9}1536\phantom{99}}\\\phantom{512)99}396\\\end{array}
Find closest multiple of 512 to 1932. We see that 3 \times 512 = 1536 is the nearest. Now subtract 1536 from 1932 to get reminder 396. Add 3 to quotient.
\begin{array}{l}\phantom{512)}00153\phantom{11}\\512\overline{)7873200}\\\phantom{512)}\underline{\phantom{}512\phantom{9999}}\\\phantom{512)}2753\\\phantom{512)}\underline{\phantom{}2560\phantom{999}}\\\phantom{512)9}1932\\\phantom{512)}\underline{\phantom{9}1536\phantom{99}}\\\phantom{512)99}3960\\\end{array}
Use the 6^{th} digit 0 from dividend 7873200
\begin{array}{l}\phantom{512)}001537\phantom{12}\\512\overline{)7873200}\\\phantom{512)}\underline{\phantom{}512\phantom{9999}}\\\phantom{512)}2753\\\phantom{512)}\underline{\phantom{}2560\phantom{999}}\\\phantom{512)9}1932\\\phantom{512)}\underline{\phantom{9}1536\phantom{99}}\\\phantom{512)99}3960\\\phantom{512)}\underline{\phantom{99}3584\phantom{9}}\\\phantom{512)999}376\\\end{array}
Find closest multiple of 512 to 3960. We see that 7 \times 512 = 3584 is the nearest. Now subtract 3584 from 3960 to get reminder 376. Add 7 to quotient.
\begin{array}{l}\phantom{512)}001537\phantom{13}\\512\overline{)7873200}\\\phantom{512)}\underline{\phantom{}512\phantom{9999}}\\\phantom{512)}2753\\\phantom{512)}\underline{\phantom{}2560\phantom{999}}\\\phantom{512)9}1932\\\phantom{512)}\underline{\phantom{9}1536\phantom{99}}\\\phantom{512)99}3960\\\phantom{512)}\underline{\phantom{99}3584\phantom{9}}\\\phantom{512)999}3760\\\end{array}
Use the 7^{th} digit 0 from dividend 7873200
\begin{array}{l}\phantom{512)}0015377\phantom{14}\\512\overline{)7873200}\\\phantom{512)}\underline{\phantom{}512\phantom{9999}}\\\phantom{512)}2753\\\phantom{512)}\underline{\phantom{}2560\phantom{999}}\\\phantom{512)9}1932\\\phantom{512)}\underline{\phantom{9}1536\phantom{99}}\\\phantom{512)99}3960\\\phantom{512)}\underline{\phantom{99}3584\phantom{9}}\\\phantom{512)999}3760\\\phantom{512)}\underline{\phantom{999}3584\phantom{}}\\\phantom{512)9999}176\\\end{array}
Find closest multiple of 512 to 3760. We see that 7 \times 512 = 3584 is the nearest. Now subtract 3584 from 3760 to get reminder 176. Add 7 to quotient.
\text{Quotient: }15377 \text{Reminder: }176
Since 176 is less than 512, stop the division. The reminder is 176. The topmost line 0015377 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15377.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}