Evaluate
\frac{785}{589}\approx 1.332767402
Factor
\frac{5 \cdot 157}{19 \cdot 31} = 1\frac{196}{589} = 1.33276740237691
Share
Copied to clipboard
\begin{array}{l}\phantom{589)}\phantom{1}\\589\overline{)785}\\\end{array}
Use the 1^{st} digit 7 from dividend 785
\begin{array}{l}\phantom{589)}0\phantom{2}\\589\overline{)785}\\\end{array}
Since 7 is less than 589, use the next digit 8 from dividend 785 and add 0 to the quotient
\begin{array}{l}\phantom{589)}0\phantom{3}\\589\overline{)785}\\\end{array}
Use the 2^{nd} digit 8 from dividend 785
\begin{array}{l}\phantom{589)}00\phantom{4}\\589\overline{)785}\\\end{array}
Since 78 is less than 589, use the next digit 5 from dividend 785 and add 0 to the quotient
\begin{array}{l}\phantom{589)}00\phantom{5}\\589\overline{)785}\\\end{array}
Use the 3^{rd} digit 5 from dividend 785
\begin{array}{l}\phantom{589)}001\phantom{6}\\589\overline{)785}\\\phantom{589)}\underline{\phantom{}589\phantom{}}\\\phantom{589)}196\\\end{array}
Find closest multiple of 589 to 785. We see that 1 \times 589 = 589 is the nearest. Now subtract 589 from 785 to get reminder 196. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }196
Since 196 is less than 589, stop the division. The reminder is 196. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}