Evaluate
\frac{\sqrt{4277}}{51324}+\frac{2774535216481125\sqrt{2911}}{71}\approx 2.108399942 \cdot 10^{15}
Share
Copied to clipboard
\frac{78}{78\sqrt{615888}}+45\times 7852155^{2}\sqrt{\frac{451}{781}}
Multiply 78 and 7896 to get 615888.
\frac{78}{78\times 12\sqrt{4277}}+45\times 7852155^{2}\sqrt{\frac{451}{781}}
Factor 615888=12^{2}\times 4277. Rewrite the square root of the product \sqrt{12^{2}\times 4277} as the product of square roots \sqrt{12^{2}}\sqrt{4277}. Take the square root of 12^{2}.
\frac{78}{936\sqrt{4277}}+45\times 7852155^{2}\sqrt{\frac{451}{781}}
Multiply 78 and 12 to get 936.
\frac{78\sqrt{4277}}{936\left(\sqrt{4277}\right)^{2}}+45\times 7852155^{2}\sqrt{\frac{451}{781}}
Rationalize the denominator of \frac{78}{936\sqrt{4277}} by multiplying numerator and denominator by \sqrt{4277}.
\frac{78\sqrt{4277}}{936\times 4277}+45\times 7852155^{2}\sqrt{\frac{451}{781}}
The square of \sqrt{4277} is 4277.
\frac{\sqrt{4277}}{12\times 4277}+45\times 7852155^{2}\sqrt{\frac{451}{781}}
Cancel out 78 in both numerator and denominator.
\frac{\sqrt{4277}}{51324}+45\times 7852155^{2}\sqrt{\frac{451}{781}}
Multiply 12 and 4277 to get 51324.
\frac{\sqrt{4277}}{51324}+45\times 61656338144025\sqrt{\frac{451}{781}}
Calculate 7852155 to the power of 2 and get 61656338144025.
\frac{\sqrt{4277}}{51324}+2774535216481125\sqrt{\frac{451}{781}}
Multiply 45 and 61656338144025 to get 2774535216481125.
\frac{\sqrt{4277}}{51324}+2774535216481125\sqrt{\frac{41}{71}}
Reduce the fraction \frac{451}{781} to lowest terms by extracting and canceling out 11.
\frac{\sqrt{4277}}{51324}+2774535216481125\times \frac{\sqrt{41}}{\sqrt{71}}
Rewrite the square root of the division \sqrt{\frac{41}{71}} as the division of square roots \frac{\sqrt{41}}{\sqrt{71}}.
\frac{\sqrt{4277}}{51324}+2774535216481125\times \frac{\sqrt{41}\sqrt{71}}{\left(\sqrt{71}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{41}}{\sqrt{71}} by multiplying numerator and denominator by \sqrt{71}.
\frac{\sqrt{4277}}{51324}+2774535216481125\times \frac{\sqrt{41}\sqrt{71}}{71}
The square of \sqrt{71} is 71.
\frac{\sqrt{4277}}{51324}+2774535216481125\times \frac{\sqrt{2911}}{71}
To multiply \sqrt{41} and \sqrt{71}, multiply the numbers under the square root.
\frac{\sqrt{4277}}{51324}+\frac{2774535216481125\sqrt{2911}}{71}
Express 2774535216481125\times \frac{\sqrt{2911}}{71} as a single fraction.
\frac{71\sqrt{4277}}{3644004}+\frac{51324\times 2774535216481125\sqrt{2911}}{3644004}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 51324 and 71 is 3644004. Multiply \frac{\sqrt{4277}}{51324} times \frac{71}{71}. Multiply \frac{2774535216481125\sqrt{2911}}{71} times \frac{51324}{51324}.
\frac{71\sqrt{4277}+51324\times 2774535216481125\sqrt{2911}}{3644004}
Since \frac{71\sqrt{4277}}{3644004} and \frac{51324\times 2774535216481125\sqrt{2911}}{3644004} have the same denominator, add them by adding their numerators.
\frac{71\sqrt{4277}+142400245450677259500\sqrt{2911}}{3644004}
Do the multiplications in 71\sqrt{4277}+51324\times 2774535216481125\sqrt{2911}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}