Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)777777}\\\end{array}
Use the 1^{st} digit 7 from dividend 777777
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)777777}\\\end{array}
Since 7 is less than 45, use the next digit 7 from dividend 777777 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)777777}\\\end{array}
Use the 2^{nd} digit 7 from dividend 777777
\begin{array}{l}\phantom{45)}01\phantom{4}\\45\overline{)777777}\\\phantom{45)}\underline{\phantom{}45\phantom{9999}}\\\phantom{45)}32\\\end{array}
Find closest multiple of 45 to 77. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 77 to get reminder 32. Add 1 to quotient.
\begin{array}{l}\phantom{45)}01\phantom{5}\\45\overline{)777777}\\\phantom{45)}\underline{\phantom{}45\phantom{9999}}\\\phantom{45)}327\\\end{array}
Use the 3^{rd} digit 7 from dividend 777777
\begin{array}{l}\phantom{45)}017\phantom{6}\\45\overline{)777777}\\\phantom{45)}\underline{\phantom{}45\phantom{9999}}\\\phantom{45)}327\\\phantom{45)}\underline{\phantom{}315\phantom{999}}\\\phantom{45)9}12\\\end{array}
Find closest multiple of 45 to 327. We see that 7 \times 45 = 315 is the nearest. Now subtract 315 from 327 to get reminder 12. Add 7 to quotient.
\begin{array}{l}\phantom{45)}017\phantom{7}\\45\overline{)777777}\\\phantom{45)}\underline{\phantom{}45\phantom{9999}}\\\phantom{45)}327\\\phantom{45)}\underline{\phantom{}315\phantom{999}}\\\phantom{45)9}127\\\end{array}
Use the 4^{th} digit 7 from dividend 777777
\begin{array}{l}\phantom{45)}0172\phantom{8}\\45\overline{)777777}\\\phantom{45)}\underline{\phantom{}45\phantom{9999}}\\\phantom{45)}327\\\phantom{45)}\underline{\phantom{}315\phantom{999}}\\\phantom{45)9}127\\\phantom{45)}\underline{\phantom{99}90\phantom{99}}\\\phantom{45)99}37\\\end{array}
Find closest multiple of 45 to 127. We see that 2 \times 45 = 90 is the nearest. Now subtract 90 from 127 to get reminder 37. Add 2 to quotient.
\begin{array}{l}\phantom{45)}0172\phantom{9}\\45\overline{)777777}\\\phantom{45)}\underline{\phantom{}45\phantom{9999}}\\\phantom{45)}327\\\phantom{45)}\underline{\phantom{}315\phantom{999}}\\\phantom{45)9}127\\\phantom{45)}\underline{\phantom{99}90\phantom{99}}\\\phantom{45)99}377\\\end{array}
Use the 5^{th} digit 7 from dividend 777777
\begin{array}{l}\phantom{45)}01728\phantom{10}\\45\overline{)777777}\\\phantom{45)}\underline{\phantom{}45\phantom{9999}}\\\phantom{45)}327\\\phantom{45)}\underline{\phantom{}315\phantom{999}}\\\phantom{45)9}127\\\phantom{45)}\underline{\phantom{99}90\phantom{99}}\\\phantom{45)99}377\\\phantom{45)}\underline{\phantom{99}360\phantom{9}}\\\phantom{45)999}17\\\end{array}
Find closest multiple of 45 to 377. We see that 8 \times 45 = 360 is the nearest. Now subtract 360 from 377 to get reminder 17. Add 8 to quotient.
\begin{array}{l}\phantom{45)}01728\phantom{11}\\45\overline{)777777}\\\phantom{45)}\underline{\phantom{}45\phantom{9999}}\\\phantom{45)}327\\\phantom{45)}\underline{\phantom{}315\phantom{999}}\\\phantom{45)9}127\\\phantom{45)}\underline{\phantom{99}90\phantom{99}}\\\phantom{45)99}377\\\phantom{45)}\underline{\phantom{99}360\phantom{9}}\\\phantom{45)999}177\\\end{array}
Use the 6^{th} digit 7 from dividend 777777
\begin{array}{l}\phantom{45)}017283\phantom{12}\\45\overline{)777777}\\\phantom{45)}\underline{\phantom{}45\phantom{9999}}\\\phantom{45)}327\\\phantom{45)}\underline{\phantom{}315\phantom{999}}\\\phantom{45)9}127\\\phantom{45)}\underline{\phantom{99}90\phantom{99}}\\\phantom{45)99}377\\\phantom{45)}\underline{\phantom{99}360\phantom{9}}\\\phantom{45)999}177\\\phantom{45)}\underline{\phantom{999}135\phantom{}}\\\phantom{45)9999}42\\\end{array}
Find closest multiple of 45 to 177. We see that 3 \times 45 = 135 is the nearest. Now subtract 135 from 177 to get reminder 42. Add 3 to quotient.
\text{Quotient: }17283 \text{Reminder: }42
Since 42 is less than 45, stop the division. The reminder is 42. The topmost line 017283 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17283.