Evaluate
\frac{7}{6}\approx 1.166666667
Factor
\frac{7}{2 \cdot 3} = 1\frac{1}{6} = 1.1666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{66)}\phantom{1}\\66\overline{)77}\\\end{array}
Use the 1^{st} digit 7 from dividend 77
\begin{array}{l}\phantom{66)}0\phantom{2}\\66\overline{)77}\\\end{array}
Since 7 is less than 66, use the next digit 7 from dividend 77 and add 0 to the quotient
\begin{array}{l}\phantom{66)}0\phantom{3}\\66\overline{)77}\\\end{array}
Use the 2^{nd} digit 7 from dividend 77
\begin{array}{l}\phantom{66)}01\phantom{4}\\66\overline{)77}\\\phantom{66)}\underline{\phantom{}66\phantom{}}\\\phantom{66)}11\\\end{array}
Find closest multiple of 66 to 77. We see that 1 \times 66 = 66 is the nearest. Now subtract 66 from 77 to get reminder 11. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }11
Since 11 is less than 66, stop the division. The reminder is 11. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}