Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{757}{196}x^{2}-4x+\frac{561}{196}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{757}{196}\times \frac{561}{196}}}{2\times \frac{757}{196}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{757}{196} for a, -4 for b, and \frac{561}{196} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{757}{196}\times \frac{561}{196}}}{2\times \frac{757}{196}}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-\frac{757}{49}\times \frac{561}{196}}}{2\times \frac{757}{196}}
Multiply -4 times \frac{757}{196}.
x=\frac{-\left(-4\right)±\sqrt{16-\frac{424677}{9604}}}{2\times \frac{757}{196}}
Multiply -\frac{757}{49} times \frac{561}{196} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-4\right)±\sqrt{-\frac{271013}{9604}}}{2\times \frac{757}{196}}
Add 16 to -\frac{424677}{9604}.
x=\frac{-\left(-4\right)±\frac{\sqrt{271013}i}{98}}{2\times \frac{757}{196}}
Take the square root of -\frac{271013}{9604}.
x=\frac{4±\frac{\sqrt{271013}i}{98}}{2\times \frac{757}{196}}
The opposite of -4 is 4.
x=\frac{4±\frac{\sqrt{271013}i}{98}}{\frac{757}{98}}
Multiply 2 times \frac{757}{196}.
x=\frac{\frac{\sqrt{271013}i}{98}+4}{\frac{757}{98}}
Now solve the equation x=\frac{4±\frac{\sqrt{271013}i}{98}}{\frac{757}{98}} when ± is plus. Add 4 to \frac{i\sqrt{271013}}{98}.
x=\frac{392+\sqrt{271013}i}{757}
Divide 4+\frac{i\sqrt{271013}}{98} by \frac{757}{98} by multiplying 4+\frac{i\sqrt{271013}}{98} by the reciprocal of \frac{757}{98}.
x=\frac{-\frac{\sqrt{271013}i}{98}+4}{\frac{757}{98}}
Now solve the equation x=\frac{4±\frac{\sqrt{271013}i}{98}}{\frac{757}{98}} when ± is minus. Subtract \frac{i\sqrt{271013}}{98} from 4.
x=\frac{-\sqrt{271013}i+392}{757}
Divide 4-\frac{i\sqrt{271013}}{98} by \frac{757}{98} by multiplying 4-\frac{i\sqrt{271013}}{98} by the reciprocal of \frac{757}{98}.
x=\frac{392+\sqrt{271013}i}{757} x=\frac{-\sqrt{271013}i+392}{757}
The equation is now solved.
\frac{757}{196}x^{2}-4x+\frac{561}{196}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{757}{196}x^{2}-4x+\frac{561}{196}-\frac{561}{196}=-\frac{561}{196}
Subtract \frac{561}{196} from both sides of the equation.
\frac{757}{196}x^{2}-4x=-\frac{561}{196}
Subtracting \frac{561}{196} from itself leaves 0.
\frac{\frac{757}{196}x^{2}-4x}{\frac{757}{196}}=-\frac{\frac{561}{196}}{\frac{757}{196}}
Divide both sides of the equation by \frac{757}{196}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{4}{\frac{757}{196}}\right)x=-\frac{\frac{561}{196}}{\frac{757}{196}}
Dividing by \frac{757}{196} undoes the multiplication by \frac{757}{196}.
x^{2}-\frac{784}{757}x=-\frac{\frac{561}{196}}{\frac{757}{196}}
Divide -4 by \frac{757}{196} by multiplying -4 by the reciprocal of \frac{757}{196}.
x^{2}-\frac{784}{757}x=-\frac{561}{757}
Divide -\frac{561}{196} by \frac{757}{196} by multiplying -\frac{561}{196} by the reciprocal of \frac{757}{196}.
x^{2}-\frac{784}{757}x+\left(-\frac{392}{757}\right)^{2}=-\frac{561}{757}+\left(-\frac{392}{757}\right)^{2}
Divide -\frac{784}{757}, the coefficient of the x term, by 2 to get -\frac{392}{757}. Then add the square of -\frac{392}{757} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{784}{757}x+\frac{153664}{573049}=-\frac{561}{757}+\frac{153664}{573049}
Square -\frac{392}{757} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{784}{757}x+\frac{153664}{573049}=-\frac{271013}{573049}
Add -\frac{561}{757} to \frac{153664}{573049} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{392}{757}\right)^{2}=-\frac{271013}{573049}
Factor x^{2}-\frac{784}{757}x+\frac{153664}{573049}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{392}{757}\right)^{2}}=\sqrt{-\frac{271013}{573049}}
Take the square root of both sides of the equation.
x-\frac{392}{757}=\frac{\sqrt{271013}i}{757} x-\frac{392}{757}=-\frac{\sqrt{271013}i}{757}
Simplify.
x=\frac{392+\sqrt{271013}i}{757} x=\frac{-\sqrt{271013}i+392}{757}
Add \frac{392}{757} to both sides of the equation.