Evaluate
\frac{755821145}{193486}\approx 3906.335057834
Factor
\frac{5 \cdot 151164229}{2 \cdot 89 \cdot 1087} = 3906\frac{64829}{193486} = 3906.3350578336417
Share
Copied to clipboard
\begin{array}{l}\phantom{193486)}\phantom{1}\\193486\overline{)755821145}\\\end{array}
Use the 1^{st} digit 7 from dividend 755821145
\begin{array}{l}\phantom{193486)}0\phantom{2}\\193486\overline{)755821145}\\\end{array}
Since 7 is less than 193486, use the next digit 5 from dividend 755821145 and add 0 to the quotient
\begin{array}{l}\phantom{193486)}0\phantom{3}\\193486\overline{)755821145}\\\end{array}
Use the 2^{nd} digit 5 from dividend 755821145
\begin{array}{l}\phantom{193486)}00\phantom{4}\\193486\overline{)755821145}\\\end{array}
Since 75 is less than 193486, use the next digit 5 from dividend 755821145 and add 0 to the quotient
\begin{array}{l}\phantom{193486)}00\phantom{5}\\193486\overline{)755821145}\\\end{array}
Use the 3^{rd} digit 5 from dividend 755821145
\begin{array}{l}\phantom{193486)}000\phantom{6}\\193486\overline{)755821145}\\\end{array}
Since 755 is less than 193486, use the next digit 8 from dividend 755821145 and add 0 to the quotient
\begin{array}{l}\phantom{193486)}000\phantom{7}\\193486\overline{)755821145}\\\end{array}
Use the 4^{th} digit 8 from dividend 755821145
\begin{array}{l}\phantom{193486)}0000\phantom{8}\\193486\overline{)755821145}\\\end{array}
Since 7558 is less than 193486, use the next digit 2 from dividend 755821145 and add 0 to the quotient
\begin{array}{l}\phantom{193486)}0000\phantom{9}\\193486\overline{)755821145}\\\end{array}
Use the 5^{th} digit 2 from dividend 755821145
\begin{array}{l}\phantom{193486)}00000\phantom{10}\\193486\overline{)755821145}\\\end{array}
Since 75582 is less than 193486, use the next digit 1 from dividend 755821145 and add 0 to the quotient
\begin{array}{l}\phantom{193486)}00000\phantom{11}\\193486\overline{)755821145}\\\end{array}
Use the 6^{th} digit 1 from dividend 755821145
\begin{array}{l}\phantom{193486)}000003\phantom{12}\\193486\overline{)755821145}\\\phantom{193486)}\underline{\phantom{}580458\phantom{999}}\\\phantom{193486)}175363\\\end{array}
Find closest multiple of 193486 to 755821. We see that 3 \times 193486 = 580458 is the nearest. Now subtract 580458 from 755821 to get reminder 175363. Add 3 to quotient.
\begin{array}{l}\phantom{193486)}000003\phantom{13}\\193486\overline{)755821145}\\\phantom{193486)}\underline{\phantom{}580458\phantom{999}}\\\phantom{193486)}1753631\\\end{array}
Use the 7^{th} digit 1 from dividend 755821145
\begin{array}{l}\phantom{193486)}0000039\phantom{14}\\193486\overline{)755821145}\\\phantom{193486)}\underline{\phantom{}580458\phantom{999}}\\\phantom{193486)}1753631\\\phantom{193486)}\underline{\phantom{}1741374\phantom{99}}\\\phantom{193486)99}12257\\\end{array}
Find closest multiple of 193486 to 1753631. We see that 9 \times 193486 = 1741374 is the nearest. Now subtract 1741374 from 1753631 to get reminder 12257. Add 9 to quotient.
\begin{array}{l}\phantom{193486)}0000039\phantom{15}\\193486\overline{)755821145}\\\phantom{193486)}\underline{\phantom{}580458\phantom{999}}\\\phantom{193486)}1753631\\\phantom{193486)}\underline{\phantom{}1741374\phantom{99}}\\\phantom{193486)99}122574\\\end{array}
Use the 8^{th} digit 4 from dividend 755821145
\begin{array}{l}\phantom{193486)}00000390\phantom{16}\\193486\overline{)755821145}\\\phantom{193486)}\underline{\phantom{}580458\phantom{999}}\\\phantom{193486)}1753631\\\phantom{193486)}\underline{\phantom{}1741374\phantom{99}}\\\phantom{193486)99}122574\\\end{array}
Since 122574 is less than 193486, use the next digit 5 from dividend 755821145 and add 0 to the quotient
\begin{array}{l}\phantom{193486)}00000390\phantom{17}\\193486\overline{)755821145}\\\phantom{193486)}\underline{\phantom{}580458\phantom{999}}\\\phantom{193486)}1753631\\\phantom{193486)}\underline{\phantom{}1741374\phantom{99}}\\\phantom{193486)99}1225745\\\end{array}
Use the 9^{th} digit 5 from dividend 755821145
\begin{array}{l}\phantom{193486)}000003906\phantom{18}\\193486\overline{)755821145}\\\phantom{193486)}\underline{\phantom{}580458\phantom{999}}\\\phantom{193486)}1753631\\\phantom{193486)}\underline{\phantom{}1741374\phantom{99}}\\\phantom{193486)99}1225745\\\phantom{193486)}\underline{\phantom{99}1160916\phantom{}}\\\phantom{193486)9999}64829\\\end{array}
Find closest multiple of 193486 to 1225745. We see that 6 \times 193486 = 1160916 is the nearest. Now subtract 1160916 from 1225745 to get reminder 64829. Add 6 to quotient.
\text{Quotient: }3906 \text{Reminder: }64829
Since 64829 is less than 193486, stop the division. The reminder is 64829. The topmost line 000003906 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3906.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}