Evaluate
\frac{741}{82}\approx 9.036585366
Factor
\frac{3 \cdot 13 \cdot 19}{2 \cdot 41} = 9\frac{3}{82} = 9.036585365853659
Share
Copied to clipboard
\begin{array}{l}\phantom{82)}\phantom{1}\\82\overline{)741}\\\end{array}
Use the 1^{st} digit 7 from dividend 741
\begin{array}{l}\phantom{82)}0\phantom{2}\\82\overline{)741}\\\end{array}
Since 7 is less than 82, use the next digit 4 from dividend 741 and add 0 to the quotient
\begin{array}{l}\phantom{82)}0\phantom{3}\\82\overline{)741}\\\end{array}
Use the 2^{nd} digit 4 from dividend 741
\begin{array}{l}\phantom{82)}00\phantom{4}\\82\overline{)741}\\\end{array}
Since 74 is less than 82, use the next digit 1 from dividend 741 and add 0 to the quotient
\begin{array}{l}\phantom{82)}00\phantom{5}\\82\overline{)741}\\\end{array}
Use the 3^{rd} digit 1 from dividend 741
\begin{array}{l}\phantom{82)}009\phantom{6}\\82\overline{)741}\\\phantom{82)}\underline{\phantom{}738\phantom{}}\\\phantom{82)99}3\\\end{array}
Find closest multiple of 82 to 741. We see that 9 \times 82 = 738 is the nearest. Now subtract 738 from 741 to get reminder 3. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }3
Since 3 is less than 82, stop the division. The reminder is 3. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}