Evaluate
\frac{741}{256}=2.89453125
Factor
\frac{3 \cdot 13 \cdot 19}{2 ^ {8}} = 2\frac{229}{256} = 2.89453125
Share
Copied to clipboard
\begin{array}{l}\phantom{256)}\phantom{1}\\256\overline{)741}\\\end{array}
Use the 1^{st} digit 7 from dividend 741
\begin{array}{l}\phantom{256)}0\phantom{2}\\256\overline{)741}\\\end{array}
Since 7 is less than 256, use the next digit 4 from dividend 741 and add 0 to the quotient
\begin{array}{l}\phantom{256)}0\phantom{3}\\256\overline{)741}\\\end{array}
Use the 2^{nd} digit 4 from dividend 741
\begin{array}{l}\phantom{256)}00\phantom{4}\\256\overline{)741}\\\end{array}
Since 74 is less than 256, use the next digit 1 from dividend 741 and add 0 to the quotient
\begin{array}{l}\phantom{256)}00\phantom{5}\\256\overline{)741}\\\end{array}
Use the 3^{rd} digit 1 from dividend 741
\begin{array}{l}\phantom{256)}002\phantom{6}\\256\overline{)741}\\\phantom{256)}\underline{\phantom{}512\phantom{}}\\\phantom{256)}229\\\end{array}
Find closest multiple of 256 to 741. We see that 2 \times 256 = 512 is the nearest. Now subtract 512 from 741 to get reminder 229. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }229
Since 229 is less than 256, stop the division. The reminder is 229. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}