Evaluate
\frac{729}{512}=1.423828125
Factor
\frac{3 ^ {6}}{2 ^ {9}} = 1\frac{217}{512} = 1.423828125
Share
Copied to clipboard
\begin{array}{l}\phantom{512)}\phantom{1}\\512\overline{)729}\\\end{array}
Use the 1^{st} digit 7 from dividend 729
\begin{array}{l}\phantom{512)}0\phantom{2}\\512\overline{)729}\\\end{array}
Since 7 is less than 512, use the next digit 2 from dividend 729 and add 0 to the quotient
\begin{array}{l}\phantom{512)}0\phantom{3}\\512\overline{)729}\\\end{array}
Use the 2^{nd} digit 2 from dividend 729
\begin{array}{l}\phantom{512)}00\phantom{4}\\512\overline{)729}\\\end{array}
Since 72 is less than 512, use the next digit 9 from dividend 729 and add 0 to the quotient
\begin{array}{l}\phantom{512)}00\phantom{5}\\512\overline{)729}\\\end{array}
Use the 3^{rd} digit 9 from dividend 729
\begin{array}{l}\phantom{512)}001\phantom{6}\\512\overline{)729}\\\phantom{512)}\underline{\phantom{}512\phantom{}}\\\phantom{512)}217\\\end{array}
Find closest multiple of 512 to 729. We see that 1 \times 512 = 512 is the nearest. Now subtract 512 from 729 to get reminder 217. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }217
Since 217 is less than 512, stop the division. The reminder is 217. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}