Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{182)}\phantom{1}\\182\overline{)728}\\\end{array}
Use the 1^{st} digit 7 from dividend 728
\begin{array}{l}\phantom{182)}0\phantom{2}\\182\overline{)728}\\\end{array}
Since 7 is less than 182, use the next digit 2 from dividend 728 and add 0 to the quotient
\begin{array}{l}\phantom{182)}0\phantom{3}\\182\overline{)728}\\\end{array}
Use the 2^{nd} digit 2 from dividend 728
\begin{array}{l}\phantom{182)}00\phantom{4}\\182\overline{)728}\\\end{array}
Since 72 is less than 182, use the next digit 8 from dividend 728 and add 0 to the quotient
\begin{array}{l}\phantom{182)}00\phantom{5}\\182\overline{)728}\\\end{array}
Use the 3^{rd} digit 8 from dividend 728
\begin{array}{l}\phantom{182)}004\phantom{6}\\182\overline{)728}\\\phantom{182)}\underline{\phantom{}728\phantom{}}\\\phantom{182)999}0\\\end{array}
Find closest multiple of 182 to 728. We see that 4 \times 182 = 728 is the nearest. Now subtract 728 from 728 to get reminder 0. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }0
Since 0 is less than 182, stop the division. The reminder is 0. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}