Evaluate
\frac{710485}{11}\approx 64589.545454545
Factor
\frac{5 \cdot 142097}{11} = 64589\frac{6}{11} = 64589.545454545456
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)710485}\\\end{array}
Use the 1^{st} digit 7 from dividend 710485
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)710485}\\\end{array}
Since 7 is less than 11, use the next digit 1 from dividend 710485 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)710485}\\\end{array}
Use the 2^{nd} digit 1 from dividend 710485
\begin{array}{l}\phantom{11)}06\phantom{4}\\11\overline{)710485}\\\phantom{11)}\underline{\phantom{}66\phantom{9999}}\\\phantom{11)9}5\\\end{array}
Find closest multiple of 11 to 71. We see that 6 \times 11 = 66 is the nearest. Now subtract 66 from 71 to get reminder 5. Add 6 to quotient.
\begin{array}{l}\phantom{11)}06\phantom{5}\\11\overline{)710485}\\\phantom{11)}\underline{\phantom{}66\phantom{9999}}\\\phantom{11)9}50\\\end{array}
Use the 3^{rd} digit 0 from dividend 710485
\begin{array}{l}\phantom{11)}064\phantom{6}\\11\overline{)710485}\\\phantom{11)}\underline{\phantom{}66\phantom{9999}}\\\phantom{11)9}50\\\phantom{11)}\underline{\phantom{9}44\phantom{999}}\\\phantom{11)99}6\\\end{array}
Find closest multiple of 11 to 50. We see that 4 \times 11 = 44 is the nearest. Now subtract 44 from 50 to get reminder 6. Add 4 to quotient.
\begin{array}{l}\phantom{11)}064\phantom{7}\\11\overline{)710485}\\\phantom{11)}\underline{\phantom{}66\phantom{9999}}\\\phantom{11)9}50\\\phantom{11)}\underline{\phantom{9}44\phantom{999}}\\\phantom{11)99}64\\\end{array}
Use the 4^{th} digit 4 from dividend 710485
\begin{array}{l}\phantom{11)}0645\phantom{8}\\11\overline{)710485}\\\phantom{11)}\underline{\phantom{}66\phantom{9999}}\\\phantom{11)9}50\\\phantom{11)}\underline{\phantom{9}44\phantom{999}}\\\phantom{11)99}64\\\phantom{11)}\underline{\phantom{99}55\phantom{99}}\\\phantom{11)999}9\\\end{array}
Find closest multiple of 11 to 64. We see that 5 \times 11 = 55 is the nearest. Now subtract 55 from 64 to get reminder 9. Add 5 to quotient.
\begin{array}{l}\phantom{11)}0645\phantom{9}\\11\overline{)710485}\\\phantom{11)}\underline{\phantom{}66\phantom{9999}}\\\phantom{11)9}50\\\phantom{11)}\underline{\phantom{9}44\phantom{999}}\\\phantom{11)99}64\\\phantom{11)}\underline{\phantom{99}55\phantom{99}}\\\phantom{11)999}98\\\end{array}
Use the 5^{th} digit 8 from dividend 710485
\begin{array}{l}\phantom{11)}06458\phantom{10}\\11\overline{)710485}\\\phantom{11)}\underline{\phantom{}66\phantom{9999}}\\\phantom{11)9}50\\\phantom{11)}\underline{\phantom{9}44\phantom{999}}\\\phantom{11)99}64\\\phantom{11)}\underline{\phantom{99}55\phantom{99}}\\\phantom{11)999}98\\\phantom{11)}\underline{\phantom{999}88\phantom{9}}\\\phantom{11)999}10\\\end{array}
Find closest multiple of 11 to 98. We see that 8 \times 11 = 88 is the nearest. Now subtract 88 from 98 to get reminder 10. Add 8 to quotient.
\begin{array}{l}\phantom{11)}06458\phantom{11}\\11\overline{)710485}\\\phantom{11)}\underline{\phantom{}66\phantom{9999}}\\\phantom{11)9}50\\\phantom{11)}\underline{\phantom{9}44\phantom{999}}\\\phantom{11)99}64\\\phantom{11)}\underline{\phantom{99}55\phantom{99}}\\\phantom{11)999}98\\\phantom{11)}\underline{\phantom{999}88\phantom{9}}\\\phantom{11)999}105\\\end{array}
Use the 6^{th} digit 5 from dividend 710485
\begin{array}{l}\phantom{11)}064589\phantom{12}\\11\overline{)710485}\\\phantom{11)}\underline{\phantom{}66\phantom{9999}}\\\phantom{11)9}50\\\phantom{11)}\underline{\phantom{9}44\phantom{999}}\\\phantom{11)99}64\\\phantom{11)}\underline{\phantom{99}55\phantom{99}}\\\phantom{11)999}98\\\phantom{11)}\underline{\phantom{999}88\phantom{9}}\\\phantom{11)999}105\\\phantom{11)}\underline{\phantom{9999}99\phantom{}}\\\phantom{11)99999}6\\\end{array}
Find closest multiple of 11 to 105. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 105 to get reminder 6. Add 9 to quotient.
\text{Quotient: }64589 \text{Reminder: }6
Since 6 is less than 11, stop the division. The reminder is 6. The topmost line 064589 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 64589.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}