Evaluate
\frac{235}{16}=14.6875
Factor
\frac{5 \cdot 47}{2 ^ {4}} = 14\frac{11}{16} = 14.6875
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)705}\\\end{array}
Use the 1^{st} digit 7 from dividend 705
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)705}\\\end{array}
Since 7 is less than 48, use the next digit 0 from dividend 705 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)705}\\\end{array}
Use the 2^{nd} digit 0 from dividend 705
\begin{array}{l}\phantom{48)}01\phantom{4}\\48\overline{)705}\\\phantom{48)}\underline{\phantom{}48\phantom{9}}\\\phantom{48)}22\\\end{array}
Find closest multiple of 48 to 70. We see that 1 \times 48 = 48 is the nearest. Now subtract 48 from 70 to get reminder 22. Add 1 to quotient.
\begin{array}{l}\phantom{48)}01\phantom{5}\\48\overline{)705}\\\phantom{48)}\underline{\phantom{}48\phantom{9}}\\\phantom{48)}225\\\end{array}
Use the 3^{rd} digit 5 from dividend 705
\begin{array}{l}\phantom{48)}014\phantom{6}\\48\overline{)705}\\\phantom{48)}\underline{\phantom{}48\phantom{9}}\\\phantom{48)}225\\\phantom{48)}\underline{\phantom{}192\phantom{}}\\\phantom{48)9}33\\\end{array}
Find closest multiple of 48 to 225. We see that 4 \times 48 = 192 is the nearest. Now subtract 192 from 225 to get reminder 33. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }33
Since 33 is less than 48, stop the division. The reminder is 33. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}