Evaluate
14
Factor
2\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)700}\\\end{array}
Use the 1^{st} digit 7 from dividend 700
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)700}\\\end{array}
Since 7 is less than 50, use the next digit 0 from dividend 700 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)700}\\\end{array}
Use the 2^{nd} digit 0 from dividend 700
\begin{array}{l}\phantom{50)}01\phantom{4}\\50\overline{)700}\\\phantom{50)}\underline{\phantom{}50\phantom{9}}\\\phantom{50)}20\\\end{array}
Find closest multiple of 50 to 70. We see that 1 \times 50 = 50 is the nearest. Now subtract 50 from 70 to get reminder 20. Add 1 to quotient.
\begin{array}{l}\phantom{50)}01\phantom{5}\\50\overline{)700}\\\phantom{50)}\underline{\phantom{}50\phantom{9}}\\\phantom{50)}200\\\end{array}
Use the 3^{rd} digit 0 from dividend 700
\begin{array}{l}\phantom{50)}014\phantom{6}\\50\overline{)700}\\\phantom{50)}\underline{\phantom{}50\phantom{9}}\\\phantom{50)}200\\\phantom{50)}\underline{\phantom{}200\phantom{}}\\\phantom{50)999}0\\\end{array}
Find closest multiple of 50 to 200. We see that 4 \times 50 = 200 is the nearest. Now subtract 200 from 200 to get reminder 0. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }0
Since 0 is less than 50, stop the division. The reminder is 0. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}