Solve for x
x = \frac{7 \sqrt{401} + 7}{4} \approx 36.79372269
x=\frac{7-7\sqrt{401}}{4}\approx -33.29372269
Graph
Share
Copied to clipboard
\left(x-35\right)\times 70+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
Variable x cannot be equal to any of the values -35,35 since division by zero is not defined. Multiply both sides of the equation by \left(x-35\right)\left(x+35\right), the least common multiple of x+35,x-35.
70x-2450+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
Use the distributive property to multiply x-35 by 70.
70x-2450+70x+2450=40\left(x-35\right)\left(x+35\right)
Use the distributive property to multiply x+35 by 70.
140x-2450+2450=40\left(x-35\right)\left(x+35\right)
Combine 70x and 70x to get 140x.
140x=40\left(x-35\right)\left(x+35\right)
Add -2450 and 2450 to get 0.
140x=\left(40x-1400\right)\left(x+35\right)
Use the distributive property to multiply 40 by x-35.
140x=40x^{2}-49000
Use the distributive property to multiply 40x-1400 by x+35 and combine like terms.
140x-40x^{2}=-49000
Subtract 40x^{2} from both sides.
140x-40x^{2}+49000=0
Add 49000 to both sides.
-40x^{2}+140x+49000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-140±\sqrt{140^{2}-4\left(-40\right)\times 49000}}{2\left(-40\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -40 for a, 140 for b, and 49000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-140±\sqrt{19600-4\left(-40\right)\times 49000}}{2\left(-40\right)}
Square 140.
x=\frac{-140±\sqrt{19600+160\times 49000}}{2\left(-40\right)}
Multiply -4 times -40.
x=\frac{-140±\sqrt{19600+7840000}}{2\left(-40\right)}
Multiply 160 times 49000.
x=\frac{-140±\sqrt{7859600}}{2\left(-40\right)}
Add 19600 to 7840000.
x=\frac{-140±140\sqrt{401}}{2\left(-40\right)}
Take the square root of 7859600.
x=\frac{-140±140\sqrt{401}}{-80}
Multiply 2 times -40.
x=\frac{140\sqrt{401}-140}{-80}
Now solve the equation x=\frac{-140±140\sqrt{401}}{-80} when ± is plus. Add -140 to 140\sqrt{401}.
x=\frac{7-7\sqrt{401}}{4}
Divide -140+140\sqrt{401} by -80.
x=\frac{-140\sqrt{401}-140}{-80}
Now solve the equation x=\frac{-140±140\sqrt{401}}{-80} when ± is minus. Subtract 140\sqrt{401} from -140.
x=\frac{7\sqrt{401}+7}{4}
Divide -140-140\sqrt{401} by -80.
x=\frac{7-7\sqrt{401}}{4} x=\frac{7\sqrt{401}+7}{4}
The equation is now solved.
\left(x-35\right)\times 70+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
Variable x cannot be equal to any of the values -35,35 since division by zero is not defined. Multiply both sides of the equation by \left(x-35\right)\left(x+35\right), the least common multiple of x+35,x-35.
70x-2450+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
Use the distributive property to multiply x-35 by 70.
70x-2450+70x+2450=40\left(x-35\right)\left(x+35\right)
Use the distributive property to multiply x+35 by 70.
140x-2450+2450=40\left(x-35\right)\left(x+35\right)
Combine 70x and 70x to get 140x.
140x=40\left(x-35\right)\left(x+35\right)
Add -2450 and 2450 to get 0.
140x=\left(40x-1400\right)\left(x+35\right)
Use the distributive property to multiply 40 by x-35.
140x=40x^{2}-49000
Use the distributive property to multiply 40x-1400 by x+35 and combine like terms.
140x-40x^{2}=-49000
Subtract 40x^{2} from both sides.
-40x^{2}+140x=-49000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-40x^{2}+140x}{-40}=-\frac{49000}{-40}
Divide both sides by -40.
x^{2}+\frac{140}{-40}x=-\frac{49000}{-40}
Dividing by -40 undoes the multiplication by -40.
x^{2}-\frac{7}{2}x=-\frac{49000}{-40}
Reduce the fraction \frac{140}{-40} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{7}{2}x=1225
Divide -49000 by -40.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=1225+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=1225+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{19649}{16}
Add 1225 to \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=\frac{19649}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{19649}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{7\sqrt{401}}{4} x-\frac{7}{4}=-\frac{7\sqrt{401}}{4}
Simplify.
x=\frac{7\sqrt{401}+7}{4} x=\frac{7-7\sqrt{401}}{4}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}