Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7+5i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+4i.
\frac{\left(7+5i\right)\left(1+4i\right)}{1^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+5i\right)\left(1+4i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\times 1+7\times \left(4i\right)+5i\times 1+5\times 4i^{2}}{17}
Multiply complex numbers 7+5i and 1+4i like you multiply binomials.
\frac{7\times 1+7\times \left(4i\right)+5i\times 1+5\times 4\left(-1\right)}{17}
By definition, i^{2} is -1.
\frac{7+28i+5i-20}{17}
Do the multiplications in 7\times 1+7\times \left(4i\right)+5i\times 1+5\times 4\left(-1\right).
\frac{7-20+\left(28+5\right)i}{17}
Combine the real and imaginary parts in 7+28i+5i-20.
\frac{-13+33i}{17}
Do the additions in 7-20+\left(28+5\right)i.
-\frac{13}{17}+\frac{33}{17}i
Divide -13+33i by 17 to get -\frac{13}{17}+\frac{33}{17}i.
Re(\frac{\left(7+5i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)})
Multiply both numerator and denominator of \frac{7+5i}{1-4i} by the complex conjugate of the denominator, 1+4i.
Re(\frac{\left(7+5i\right)\left(1+4i\right)}{1^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(7+5i\right)\left(1+4i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\times 1+7\times \left(4i\right)+5i\times 1+5\times 4i^{2}}{17})
Multiply complex numbers 7+5i and 1+4i like you multiply binomials.
Re(\frac{7\times 1+7\times \left(4i\right)+5i\times 1+5\times 4\left(-1\right)}{17})
By definition, i^{2} is -1.
Re(\frac{7+28i+5i-20}{17})
Do the multiplications in 7\times 1+7\times \left(4i\right)+5i\times 1+5\times 4\left(-1\right).
Re(\frac{7-20+\left(28+5\right)i}{17})
Combine the real and imaginary parts in 7+28i+5i-20.
Re(\frac{-13+33i}{17})
Do the additions in 7-20+\left(28+5\right)i.
Re(-\frac{13}{17}+\frac{33}{17}i)
Divide -13+33i by 17 to get -\frac{13}{17}+\frac{33}{17}i.
-\frac{13}{17}
The real part of -\frac{13}{17}+\frac{33}{17}i is -\frac{13}{17}.