Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7+\sqrt{5}\right)\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}
Rationalize the denominator of \frac{7+\sqrt{5}}{\sqrt{5}-1} by multiplying numerator and denominator by \sqrt{5}+1.
\frac{\left(7+\sqrt{5}\right)\left(\sqrt{5}+1\right)}{\left(\sqrt{5}\right)^{2}-1^{2}}
Consider \left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+\sqrt{5}\right)\left(\sqrt{5}+1\right)}{5-1}
Square \sqrt{5}. Square 1.
\frac{\left(7+\sqrt{5}\right)\left(\sqrt{5}+1\right)}{4}
Subtract 1 from 5 to get 4.
\frac{7\sqrt{5}+7+\left(\sqrt{5}\right)^{2}+\sqrt{5}}{4}
Apply the distributive property by multiplying each term of 7+\sqrt{5} by each term of \sqrt{5}+1.
\frac{7\sqrt{5}+7+5+\sqrt{5}}{4}
The square of \sqrt{5} is 5.
\frac{7\sqrt{5}+12+\sqrt{5}}{4}
Add 7 and 5 to get 12.
\frac{8\sqrt{5}+12}{4}
Combine 7\sqrt{5} and \sqrt{5} to get 8\sqrt{5}.
2\sqrt{5}+3
Divide each term of 8\sqrt{5}+12 by 4 to get 2\sqrt{5}+3.