Evaluate
2\sqrt{5}+3\approx 7.472135955
Share
Copied to clipboard
\frac{\left(7+\sqrt{5}\right)\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}
Rationalize the denominator of \frac{7+\sqrt{5}}{\sqrt{5}-1} by multiplying numerator and denominator by \sqrt{5}+1.
\frac{\left(7+\sqrt{5}\right)\left(\sqrt{5}+1\right)}{\left(\sqrt{5}\right)^{2}-1^{2}}
Consider \left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+\sqrt{5}\right)\left(\sqrt{5}+1\right)}{5-1}
Square \sqrt{5}. Square 1.
\frac{\left(7+\sqrt{5}\right)\left(\sqrt{5}+1\right)}{4}
Subtract 1 from 5 to get 4.
\frac{7\sqrt{5}+7+\left(\sqrt{5}\right)^{2}+\sqrt{5}}{4}
Apply the distributive property by multiplying each term of 7+\sqrt{5} by each term of \sqrt{5}+1.
\frac{7\sqrt{5}+7+5+\sqrt{5}}{4}
The square of \sqrt{5} is 5.
\frac{7\sqrt{5}+12+\sqrt{5}}{4}
Add 7 and 5 to get 12.
\frac{8\sqrt{5}+12}{4}
Combine 7\sqrt{5} and \sqrt{5} to get 8\sqrt{5}.
2\sqrt{5}+3
Divide each term of 8\sqrt{5}+12 by 4 to get 2\sqrt{5}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}