Solve for x
x=\frac{7}{108y\left(3y+1\right)}
y\neq -\frac{1}{3}\text{ and }y\neq 0
Solve for y (complex solution)
y=-\frac{\sqrt{x\left(9x+7\right)}+3x}{18x}
y=\frac{\sqrt{x\left(9x+7\right)}-3x}{18x}\text{, }x\neq 0
Solve for y
y=-\frac{\sqrt{x\left(9x+7\right)}+3x}{18x}
y=\frac{\sqrt{x\left(9x+7\right)}-3x}{18x}\text{, }x\leq -\frac{7}{9}\text{ or }x>0
Graph
Share
Copied to clipboard
7=9y^{2}\times 36x+3y\times 36x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 36x.
7=324y^{2}x+3y\times 36x
Multiply 9 and 36 to get 324.
7=324y^{2}x+108yx
Multiply 3 and 36 to get 108.
324y^{2}x+108yx=7
Swap sides so that all variable terms are on the left hand side.
\left(324y^{2}+108y\right)x=7
Combine all terms containing x.
\frac{\left(324y^{2}+108y\right)x}{324y^{2}+108y}=\frac{7}{324y^{2}+108y}
Divide both sides by 324y^{2}+108y.
x=\frac{7}{324y^{2}+108y}
Dividing by 324y^{2}+108y undoes the multiplication by 324y^{2}+108y.
x=\frac{7}{108y\left(3y+1\right)}
Divide 7 by 324y^{2}+108y.
x=\frac{7}{108y\left(3y+1\right)}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}