Evaluate
\frac{134239}{122400}\approx 1.096723856
Factor
\frac{7 \cdot 127 \cdot 151}{2 ^ {5} \cdot 3 ^ {2} \cdot 5 ^ {2} \cdot 17} = 1\frac{11839}{122400} = 1.0967238562091504
Share
Copied to clipboard
\frac{119}{612}+\frac{198}{612}+\frac{7}{32}+\frac{9}{25}
Least common multiple of 36 and 34 is 612. Convert \frac{7}{36} and \frac{11}{34} to fractions with denominator 612.
\frac{119+198}{612}+\frac{7}{32}+\frac{9}{25}
Since \frac{119}{612} and \frac{198}{612} have the same denominator, add them by adding their numerators.
\frac{317}{612}+\frac{7}{32}+\frac{9}{25}
Add 119 and 198 to get 317.
\frac{2536}{4896}+\frac{1071}{4896}+\frac{9}{25}
Least common multiple of 612 and 32 is 4896. Convert \frac{317}{612} and \frac{7}{32} to fractions with denominator 4896.
\frac{2536+1071}{4896}+\frac{9}{25}
Since \frac{2536}{4896} and \frac{1071}{4896} have the same denominator, add them by adding their numerators.
\frac{3607}{4896}+\frac{9}{25}
Add 2536 and 1071 to get 3607.
\frac{90175}{122400}+\frac{44064}{122400}
Least common multiple of 4896 and 25 is 122400. Convert \frac{3607}{4896} and \frac{9}{25} to fractions with denominator 122400.
\frac{90175+44064}{122400}
Since \frac{90175}{122400} and \frac{44064}{122400} have the same denominator, add them by adding their numerators.
\frac{134239}{122400}
Add 90175 and 44064 to get 134239.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}