Evaluate
\frac{7}{2}=3.5
Factor
\frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
\frac{7}{3}+\frac{21}{8}\left(-\frac{41}{9}+\frac{5}{7}\times 7\right)
Fraction \frac{-41}{9} can be rewritten as -\frac{41}{9} by extracting the negative sign.
\frac{7}{3}+\frac{21}{8}\left(-\frac{41}{9}+5\right)
Cancel out 7 and 7.
\frac{7}{3}+\frac{21}{8}\left(-\frac{41}{9}+\frac{45}{9}\right)
Convert 5 to fraction \frac{45}{9}.
\frac{7}{3}+\frac{21}{8}\times \frac{-41+45}{9}
Since -\frac{41}{9} and \frac{45}{9} have the same denominator, add them by adding their numerators.
\frac{7}{3}+\frac{21}{8}\times \frac{4}{9}
Add -41 and 45 to get 4.
\frac{7}{3}+\frac{21\times 4}{8\times 9}
Multiply \frac{21}{8} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{3}+\frac{84}{72}
Do the multiplications in the fraction \frac{21\times 4}{8\times 9}.
\frac{7}{3}+\frac{7}{6}
Reduce the fraction \frac{84}{72} to lowest terms by extracting and canceling out 12.
\frac{14}{6}+\frac{7}{6}
Least common multiple of 3 and 6 is 6. Convert \frac{7}{3} and \frac{7}{6} to fractions with denominator 6.
\frac{14+7}{6}
Since \frac{14}{6} and \frac{7}{6} have the same denominator, add them by adding their numerators.
\frac{21}{6}
Add 14 and 7 to get 21.
\frac{7}{2}
Reduce the fraction \frac{21}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}