Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{7\left(-2\right)}{3}\times 5x\times 4
Express \frac{7}{3}\left(-2\right) as a single fraction.
\frac{-14}{3}\times 5x\times 4
Multiply 7 and -2 to get -14.
-\frac{14}{3}\times 5x\times 4
Fraction \frac{-14}{3} can be rewritten as -\frac{14}{3} by extracting the negative sign.
\frac{-14\times 5}{3}x\times 4
Express -\frac{14}{3}\times 5 as a single fraction.
\frac{-70}{3}x\times 4
Multiply -14 and 5 to get -70.
-\frac{70}{3}x\times 4
Fraction \frac{-70}{3} can be rewritten as -\frac{70}{3} by extracting the negative sign.
\frac{-70\times 4}{3}x
Express -\frac{70}{3}\times 4 as a single fraction.
\frac{-280}{3}x
Multiply -70 and 4 to get -280.
-\frac{280}{3}x
Fraction \frac{-280}{3} can be rewritten as -\frac{280}{3} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(-2\right)}{3}\times 5x\times 4)
Express \frac{7}{3}\left(-2\right) as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-14}{3}\times 5x\times 4)
Multiply 7 and -2 to get -14.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{14}{3}\times 5x\times 4)
Fraction \frac{-14}{3} can be rewritten as -\frac{14}{3} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-14\times 5}{3}x\times 4)
Express -\frac{14}{3}\times 5 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-70}{3}x\times 4)
Multiply -14 and 5 to get -70.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{70}{3}x\times 4)
Fraction \frac{-70}{3} can be rewritten as -\frac{70}{3} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-70\times 4}{3}x)
Express -\frac{70}{3}\times 4 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-280}{3}x)
Multiply -70 and 4 to get -280.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{280}{3}x)
Fraction \frac{-280}{3} can be rewritten as -\frac{280}{3} by extracting the negative sign.
-\frac{280}{3}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{280}{3}x^{0}
Subtract 1 from 1.
-\frac{280}{3}
For any term t except 0, t^{0}=1.