Solve for x
x=\frac{7y-5}{6}
y\neq 0
Solve for y
y=\frac{6x+5}{7}
x\neq -\frac{5}{6}
Graph
Share
Copied to clipboard
6x-4y+5=3y
Multiply both sides of the equation by y.
6x+5=3y+4y
Add 4y to both sides.
6x+5=7y
Combine 3y and 4y to get 7y.
6x=7y-5
Subtract 5 from both sides.
\frac{6x}{6}=\frac{7y-5}{6}
Divide both sides by 6.
x=\frac{7y-5}{6}
Dividing by 6 undoes the multiplication by 6.
6x-4y+5=3y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
6x-4y+5-3y=0
Subtract 3y from both sides.
6x-7y+5=0
Combine -4y and -3y to get -7y.
-7y+5=-6x
Subtract 6x from both sides. Anything subtracted from zero gives its negation.
-7y=-6x-5
Subtract 5 from both sides.
\frac{-7y}{-7}=\frac{-6x-5}{-7}
Divide both sides by -7.
y=\frac{-6x-5}{-7}
Dividing by -7 undoes the multiplication by -7.
y=\frac{6x+5}{7}
Divide -6x-5 by -7.
y=\frac{6x+5}{7}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}