Solve for x
x = -\frac{19}{8} = -2\frac{3}{8} = -2.375
Graph
Share
Copied to clipboard
\left(x+4\right)\left(6x+19\right)=x\left(11+6x\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+4\right), the least common multiple of x,x+4.
6x^{2}+43x+76=x\left(11+6x\right)
Use the distributive property to multiply x+4 by 6x+19 and combine like terms.
6x^{2}+43x+76=11x+6x^{2}
Use the distributive property to multiply x by 11+6x.
6x^{2}+43x+76-11x=6x^{2}
Subtract 11x from both sides.
6x^{2}+32x+76=6x^{2}
Combine 43x and -11x to get 32x.
6x^{2}+32x+76-6x^{2}=0
Subtract 6x^{2} from both sides.
32x+76=0
Combine 6x^{2} and -6x^{2} to get 0.
32x=-76
Subtract 76 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-76}{32}
Divide both sides by 32.
x=-\frac{19}{8}
Reduce the fraction \frac{-76}{32} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}