Evaluate
\frac{692}{91}\approx 7.604395604
Factor
\frac{2 ^ {2} \cdot 173}{7 \cdot 13} = 7\frac{55}{91} = 7.604395604395604
Share
Copied to clipboard
\begin{array}{l}\phantom{91)}\phantom{1}\\91\overline{)692}\\\end{array}
Use the 1^{st} digit 6 from dividend 692
\begin{array}{l}\phantom{91)}0\phantom{2}\\91\overline{)692}\\\end{array}
Since 6 is less than 91, use the next digit 9 from dividend 692 and add 0 to the quotient
\begin{array}{l}\phantom{91)}0\phantom{3}\\91\overline{)692}\\\end{array}
Use the 2^{nd} digit 9 from dividend 692
\begin{array}{l}\phantom{91)}00\phantom{4}\\91\overline{)692}\\\end{array}
Since 69 is less than 91, use the next digit 2 from dividend 692 and add 0 to the quotient
\begin{array}{l}\phantom{91)}00\phantom{5}\\91\overline{)692}\\\end{array}
Use the 3^{rd} digit 2 from dividend 692
\begin{array}{l}\phantom{91)}007\phantom{6}\\91\overline{)692}\\\phantom{91)}\underline{\phantom{}637\phantom{}}\\\phantom{91)9}55\\\end{array}
Find closest multiple of 91 to 692. We see that 7 \times 91 = 637 is the nearest. Now subtract 637 from 692 to get reminder 55. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }55
Since 55 is less than 91, stop the division. The reminder is 55. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}