Evaluate
\frac{136}{5}=27.2
Factor
\frac{2 ^ {3} \cdot 17}{5} = 27\frac{1}{5} = 27.2
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)680}\\\end{array}
Use the 1^{st} digit 6 from dividend 680
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)680}\\\end{array}
Since 6 is less than 25, use the next digit 8 from dividend 680 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)680}\\\end{array}
Use the 2^{nd} digit 8 from dividend 680
\begin{array}{l}\phantom{25)}02\phantom{4}\\25\overline{)680}\\\phantom{25)}\underline{\phantom{}50\phantom{9}}\\\phantom{25)}18\\\end{array}
Find closest multiple of 25 to 68. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 68 to get reminder 18. Add 2 to quotient.
\begin{array}{l}\phantom{25)}02\phantom{5}\\25\overline{)680}\\\phantom{25)}\underline{\phantom{}50\phantom{9}}\\\phantom{25)}180\\\end{array}
Use the 3^{rd} digit 0 from dividend 680
\begin{array}{l}\phantom{25)}027\phantom{6}\\25\overline{)680}\\\phantom{25)}\underline{\phantom{}50\phantom{9}}\\\phantom{25)}180\\\phantom{25)}\underline{\phantom{}175\phantom{}}\\\phantom{25)99}5\\\end{array}
Find closest multiple of 25 to 180. We see that 7 \times 25 = 175 is the nearest. Now subtract 175 from 180 to get reminder 5. Add 7 to quotient.
\text{Quotient: }27 \text{Reminder: }5
Since 5 is less than 25, stop the division. The reminder is 5. The topmost line 027 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}