Evaluate
\frac{134}{3}\approx 44.666666667
Factor
\frac{2 \cdot 67}{3} = 44\frac{2}{3} = 44.666666666666664
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)670}\\\end{array}
Use the 1^{st} digit 6 from dividend 670
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)670}\\\end{array}
Since 6 is less than 15, use the next digit 7 from dividend 670 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)670}\\\end{array}
Use the 2^{nd} digit 7 from dividend 670
\begin{array}{l}\phantom{15)}04\phantom{4}\\15\overline{)670}\\\phantom{15)}\underline{\phantom{}60\phantom{9}}\\\phantom{15)9}7\\\end{array}
Find closest multiple of 15 to 67. We see that 4 \times 15 = 60 is the nearest. Now subtract 60 from 67 to get reminder 7. Add 4 to quotient.
\begin{array}{l}\phantom{15)}04\phantom{5}\\15\overline{)670}\\\phantom{15)}\underline{\phantom{}60\phantom{9}}\\\phantom{15)9}70\\\end{array}
Use the 3^{rd} digit 0 from dividend 670
\begin{array}{l}\phantom{15)}044\phantom{6}\\15\overline{)670}\\\phantom{15)}\underline{\phantom{}60\phantom{9}}\\\phantom{15)9}70\\\phantom{15)}\underline{\phantom{9}60\phantom{}}\\\phantom{15)9}10\\\end{array}
Find closest multiple of 15 to 70. We see that 4 \times 15 = 60 is the nearest. Now subtract 60 from 70 to get reminder 10. Add 4 to quotient.
\text{Quotient: }44 \text{Reminder: }10
Since 10 is less than 15, stop the division. The reminder is 10. The topmost line 044 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 44.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}