\frac{ 64 }{ 25 } + { x }^{ 2 } = ( \sqrt{ 16+ { x }^{ 2 } } - \frac{ 8 }{ 5 }
Solve for x (complex solution)
x=-\frac{i\sqrt{366-10\sqrt{1209}}}{10}\approx -0-0.427705822i
x=\frac{i\sqrt{366-10\sqrt{1209}}}{10}\approx 0.427705822i
Graph
Share
Copied to clipboard
\frac{64}{25}+x^{2}+\frac{8}{5}=\sqrt{16+x^{2}}
Subtract -\frac{8}{5} from both sides of the equation.
\frac{104}{25}+x^{2}=\sqrt{16+x^{2}}
Add \frac{64}{25} and \frac{8}{5} to get \frac{104}{25}.
\left(\frac{104}{25}+x^{2}\right)^{2}=\left(\sqrt{16+x^{2}}\right)^{2}
Square both sides of the equation.
\frac{10816}{625}+\frac{208}{25}x^{2}+\left(x^{2}\right)^{2}=\left(\sqrt{16+x^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{104}{25}+x^{2}\right)^{2}.
\frac{10816}{625}+\frac{208}{25}x^{2}+x^{4}=\left(\sqrt{16+x^{2}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{10816}{625}+\frac{208}{25}x^{2}+x^{4}=16+x^{2}
Calculate \sqrt{16+x^{2}} to the power of 2 and get 16+x^{2}.
\frac{10816}{625}+\frac{208}{25}x^{2}+x^{4}-16=x^{2}
Subtract 16 from both sides.
\frac{816}{625}+\frac{208}{25}x^{2}+x^{4}=x^{2}
Subtract 16 from \frac{10816}{625} to get \frac{816}{625}.
\frac{816}{625}+\frac{208}{25}x^{2}+x^{4}-x^{2}=0
Subtract x^{2} from both sides.
\frac{816}{625}+\frac{183}{25}x^{2}+x^{4}=0
Combine \frac{208}{25}x^{2} and -x^{2} to get \frac{183}{25}x^{2}.
t^{2}+\frac{183}{25}t+\frac{816}{625}=0
Substitute t for x^{2}.
t=\frac{-\frac{183}{25}±\sqrt{\left(\frac{183}{25}\right)^{2}-4\times 1\times \frac{816}{625}}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, \frac{183}{25} for b, and \frac{816}{625} for c in the quadratic formula.
t=\frac{-\frac{183}{25}±\frac{1}{5}\sqrt{1209}}{2}
Do the calculations.
t=\frac{\sqrt{1209}}{10}-\frac{183}{50} t=-\frac{\sqrt{1209}}{10}-\frac{183}{50}
Solve the equation t=\frac{-\frac{183}{25}±\frac{1}{5}\sqrt{1209}}{2} when ± is plus and when ± is minus.
x=-i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}} x=i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}} x=-i\sqrt{\frac{\sqrt{1209}}{10}+\frac{183}{50}} x=i\sqrt{\frac{\sqrt{1209}}{10}+\frac{183}{50}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\frac{64}{25}+\left(-i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}}\right)^{2}=\sqrt{16+\left(-i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}}\right)^{2}}-\frac{8}{5}
Substitute -i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}} for x in the equation \frac{64}{25}+x^{2}=\sqrt{16+x^{2}}-\frac{8}{5}.
-\frac{11}{10}+\frac{1}{10}\times 1209^{\frac{1}{2}}=-\frac{11}{10}+\frac{1}{10}\times 1209^{\frac{1}{2}}
Simplify. The value x=-i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}} satisfies the equation.
\frac{64}{25}+\left(i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}}\right)^{2}=\sqrt{16+\left(i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}}\right)^{2}}-\frac{8}{5}
Substitute i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}} for x in the equation \frac{64}{25}+x^{2}=\sqrt{16+x^{2}}-\frac{8}{5}.
-\frac{11}{10}+\frac{1}{10}\times 1209^{\frac{1}{2}}=-\frac{11}{10}+\frac{1}{10}\times 1209^{\frac{1}{2}}
Simplify. The value x=i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}} satisfies the equation.
\frac{64}{25}+\left(-i\sqrt{\frac{\sqrt{1209}}{10}+\frac{183}{50}}\right)^{2}=\sqrt{16+\left(-i\sqrt{\frac{\sqrt{1209}}{10}+\frac{183}{50}}\right)^{2}}-\frac{8}{5}
Substitute -i\sqrt{\frac{\sqrt{1209}}{10}+\frac{183}{50}} for x in the equation \frac{64}{25}+x^{2}=\sqrt{16+x^{2}}-\frac{8}{5}.
-\frac{11}{10}-\frac{1}{10}\times 1209^{\frac{1}{2}}=-\frac{21}{10}+\frac{1}{10}\times 1209^{\frac{1}{2}}
Simplify. The value x=-i\sqrt{\frac{\sqrt{1209}}{10}+\frac{183}{50}} does not satisfy the equation because the left and the right hand side have opposite signs.
\frac{64}{25}+\left(i\sqrt{\frac{\sqrt{1209}}{10}+\frac{183}{50}}\right)^{2}=\sqrt{16+\left(i\sqrt{\frac{\sqrt{1209}}{10}+\frac{183}{50}}\right)^{2}}-\frac{8}{5}
Substitute i\sqrt{\frac{\sqrt{1209}}{10}+\frac{183}{50}} for x in the equation \frac{64}{25}+x^{2}=\sqrt{16+x^{2}}-\frac{8}{5}.
-\frac{11}{10}-\frac{1}{10}\times 1209^{\frac{1}{2}}=-\frac{21}{10}+\frac{1}{10}\times 1209^{\frac{1}{2}}
Simplify. The value x=i\sqrt{\frac{\sqrt{1209}}{10}+\frac{183}{50}} does not satisfy the equation because the left and the right hand side have opposite signs.
x=-i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}} x=i\sqrt{-\frac{\sqrt{1209}}{10}+\frac{183}{50}}
List all solutions of x^{2}+\frac{104}{25}=\sqrt{x^{2}+16}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}