Solve for x
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Graph
Share
Copied to clipboard
\left(x+3\right)\times 6=\left(x-2\right)x+\left(x-2\right)\left(x+3\right)\left(-1\right)
Variable x cannot be equal to any of the values -3,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+3\right), the least common multiple of x-2,x+3.
6x+18=\left(x-2\right)x+\left(x-2\right)\left(x+3\right)\left(-1\right)
Use the distributive property to multiply x+3 by 6.
6x+18=x^{2}-2x+\left(x-2\right)\left(x+3\right)\left(-1\right)
Use the distributive property to multiply x-2 by x.
6x+18=x^{2}-2x+\left(x^{2}+x-6\right)\left(-1\right)
Use the distributive property to multiply x-2 by x+3 and combine like terms.
6x+18=x^{2}-2x-x^{2}-x+6
Use the distributive property to multiply x^{2}+x-6 by -1.
6x+18=-2x-x+6
Combine x^{2} and -x^{2} to get 0.
6x+18=-3x+6
Combine -2x and -x to get -3x.
6x+18+3x=6
Add 3x to both sides.
9x+18=6
Combine 6x and 3x to get 9x.
9x=6-18
Subtract 18 from both sides.
9x=-12
Subtract 18 from 6 to get -12.
x=\frac{-12}{9}
Divide both sides by 9.
x=-\frac{4}{3}
Reduce the fraction \frac{-12}{9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}