Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}
Rationalize the denominator of \frac{6}{3+\sqrt{7}} by multiplying numerator and denominator by 3-\sqrt{7}.
\frac{6\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(3-\sqrt{7}\right)}{9-7}
Square 3. Square \sqrt{7}.
\frac{6\left(3-\sqrt{7}\right)}{2}
Subtract 7 from 9 to get 2.
3\left(3-\sqrt{7}\right)
Divide 6\left(3-\sqrt{7}\right) by 2 to get 3\left(3-\sqrt{7}\right).
9-3\sqrt{7}
Use the distributive property to multiply 3 by 3-\sqrt{7}.