Evaluate
\frac{5995}{711}\approx 8.431786217
Factor
\frac{5 \cdot 11 \cdot 109}{3 ^ {2} \cdot 79} = 8\frac{307}{711} = 8.431786216596343
Share
Copied to clipboard
\begin{array}{l}\phantom{711)}\phantom{1}\\711\overline{)5995}\\\end{array}
Use the 1^{st} digit 5 from dividend 5995
\begin{array}{l}\phantom{711)}0\phantom{2}\\711\overline{)5995}\\\end{array}
Since 5 is less than 711, use the next digit 9 from dividend 5995 and add 0 to the quotient
\begin{array}{l}\phantom{711)}0\phantom{3}\\711\overline{)5995}\\\end{array}
Use the 2^{nd} digit 9 from dividend 5995
\begin{array}{l}\phantom{711)}00\phantom{4}\\711\overline{)5995}\\\end{array}
Since 59 is less than 711, use the next digit 9 from dividend 5995 and add 0 to the quotient
\begin{array}{l}\phantom{711)}00\phantom{5}\\711\overline{)5995}\\\end{array}
Use the 3^{rd} digit 9 from dividend 5995
\begin{array}{l}\phantom{711)}000\phantom{6}\\711\overline{)5995}\\\end{array}
Since 599 is less than 711, use the next digit 5 from dividend 5995 and add 0 to the quotient
\begin{array}{l}\phantom{711)}000\phantom{7}\\711\overline{)5995}\\\end{array}
Use the 4^{th} digit 5 from dividend 5995
\begin{array}{l}\phantom{711)}0008\phantom{8}\\711\overline{)5995}\\\phantom{711)}\underline{\phantom{}5688\phantom{}}\\\phantom{711)9}307\\\end{array}
Find closest multiple of 711 to 5995. We see that 8 \times 711 = 5688 is the nearest. Now subtract 5688 from 5995 to get reminder 307. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }307
Since 307 is less than 711, stop the division. The reminder is 307. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}