Evaluate
\frac{57239}{360}\approx 158.997222222
Factor
\frac{7 \cdot 13 \cdot 17 \cdot 37}{2 ^ {3} \cdot 3 ^ {2} \cdot 5} = 158\frac{359}{360} = 158.99722222222223
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)57239}\\\end{array}
Use the 1^{st} digit 5 from dividend 57239
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)57239}\\\end{array}
Since 5 is less than 360, use the next digit 7 from dividend 57239 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)57239}\\\end{array}
Use the 2^{nd} digit 7 from dividend 57239
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)57239}\\\end{array}
Since 57 is less than 360, use the next digit 2 from dividend 57239 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)57239}\\\end{array}
Use the 3^{rd} digit 2 from dividend 57239
\begin{array}{l}\phantom{360)}001\phantom{6}\\360\overline{)57239}\\\phantom{360)}\underline{\phantom{}360\phantom{99}}\\\phantom{360)}212\\\end{array}
Find closest multiple of 360 to 572. We see that 1 \times 360 = 360 is the nearest. Now subtract 360 from 572 to get reminder 212. Add 1 to quotient.
\begin{array}{l}\phantom{360)}001\phantom{7}\\360\overline{)57239}\\\phantom{360)}\underline{\phantom{}360\phantom{99}}\\\phantom{360)}2123\\\end{array}
Use the 4^{th} digit 3 from dividend 57239
\begin{array}{l}\phantom{360)}0015\phantom{8}\\360\overline{)57239}\\\phantom{360)}\underline{\phantom{}360\phantom{99}}\\\phantom{360)}2123\\\phantom{360)}\underline{\phantom{}1800\phantom{9}}\\\phantom{360)9}323\\\end{array}
Find closest multiple of 360 to 2123. We see that 5 \times 360 = 1800 is the nearest. Now subtract 1800 from 2123 to get reminder 323. Add 5 to quotient.
\begin{array}{l}\phantom{360)}0015\phantom{9}\\360\overline{)57239}\\\phantom{360)}\underline{\phantom{}360\phantom{99}}\\\phantom{360)}2123\\\phantom{360)}\underline{\phantom{}1800\phantom{9}}\\\phantom{360)9}3239\\\end{array}
Use the 5^{th} digit 9 from dividend 57239
\begin{array}{l}\phantom{360)}00158\phantom{10}\\360\overline{)57239}\\\phantom{360)}\underline{\phantom{}360\phantom{99}}\\\phantom{360)}2123\\\phantom{360)}\underline{\phantom{}1800\phantom{9}}\\\phantom{360)9}3239\\\phantom{360)}\underline{\phantom{9}2880\phantom{}}\\\phantom{360)99}359\\\end{array}
Find closest multiple of 360 to 3239. We see that 8 \times 360 = 2880 is the nearest. Now subtract 2880 from 3239 to get reminder 359. Add 8 to quotient.
\text{Quotient: }158 \text{Reminder: }359
Since 359 is less than 360, stop the division. The reminder is 359. The topmost line 00158 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 158.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}