Evaluate
\frac{95}{6}\approx 15.833333333
Factor
\frac{5 \cdot 19}{2 \cdot 3} = 15\frac{5}{6} = 15.833333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)570}\\\end{array}
Use the 1^{st} digit 5 from dividend 570
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)570}\\\end{array}
Since 5 is less than 36, use the next digit 7 from dividend 570 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)570}\\\end{array}
Use the 2^{nd} digit 7 from dividend 570
\begin{array}{l}\phantom{36)}01\phantom{4}\\36\overline{)570}\\\phantom{36)}\underline{\phantom{}36\phantom{9}}\\\phantom{36)}21\\\end{array}
Find closest multiple of 36 to 57. We see that 1 \times 36 = 36 is the nearest. Now subtract 36 from 57 to get reminder 21. Add 1 to quotient.
\begin{array}{l}\phantom{36)}01\phantom{5}\\36\overline{)570}\\\phantom{36)}\underline{\phantom{}36\phantom{9}}\\\phantom{36)}210\\\end{array}
Use the 3^{rd} digit 0 from dividend 570
\begin{array}{l}\phantom{36)}015\phantom{6}\\36\overline{)570}\\\phantom{36)}\underline{\phantom{}36\phantom{9}}\\\phantom{36)}210\\\phantom{36)}\underline{\phantom{}180\phantom{}}\\\phantom{36)9}30\\\end{array}
Find closest multiple of 36 to 210. We see that 5 \times 36 = 180 is the nearest. Now subtract 180 from 210 to get reminder 30. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }30
Since 30 is less than 36, stop the division. The reminder is 30. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}