Evaluate
\frac{703329}{152819}\approx 4.602366198
Factor
\frac{3 \cdot 11 \cdot 21313}{152819} = 4\frac{92053}{152819} = 4.602366197920416
Share
Copied to clipboard
\begin{array}{l}\phantom{1222552)}\phantom{1}\\1222552\overline{)5626632}\\\end{array}
Use the 1^{st} digit 5 from dividend 5626632
\begin{array}{l}\phantom{1222552)}0\phantom{2}\\1222552\overline{)5626632}\\\end{array}
Since 5 is less than 1222552, use the next digit 6 from dividend 5626632 and add 0 to the quotient
\begin{array}{l}\phantom{1222552)}0\phantom{3}\\1222552\overline{)5626632}\\\end{array}
Use the 2^{nd} digit 6 from dividend 5626632
\begin{array}{l}\phantom{1222552)}00\phantom{4}\\1222552\overline{)5626632}\\\end{array}
Since 56 is less than 1222552, use the next digit 2 from dividend 5626632 and add 0 to the quotient
\begin{array}{l}\phantom{1222552)}00\phantom{5}\\1222552\overline{)5626632}\\\end{array}
Use the 3^{rd} digit 2 from dividend 5626632
\begin{array}{l}\phantom{1222552)}000\phantom{6}\\1222552\overline{)5626632}\\\end{array}
Since 562 is less than 1222552, use the next digit 6 from dividend 5626632 and add 0 to the quotient
\begin{array}{l}\phantom{1222552)}000\phantom{7}\\1222552\overline{)5626632}\\\end{array}
Use the 4^{th} digit 6 from dividend 5626632
\begin{array}{l}\phantom{1222552)}0000\phantom{8}\\1222552\overline{)5626632}\\\end{array}
Since 5626 is less than 1222552, use the next digit 6 from dividend 5626632 and add 0 to the quotient
\begin{array}{l}\phantom{1222552)}0000\phantom{9}\\1222552\overline{)5626632}\\\end{array}
Use the 5^{th} digit 6 from dividend 5626632
\begin{array}{l}\phantom{1222552)}00000\phantom{10}\\1222552\overline{)5626632}\\\end{array}
Since 56266 is less than 1222552, use the next digit 3 from dividend 5626632 and add 0 to the quotient
\begin{array}{l}\phantom{1222552)}00000\phantom{11}\\1222552\overline{)5626632}\\\end{array}
Use the 6^{th} digit 3 from dividend 5626632
\begin{array}{l}\phantom{1222552)}000000\phantom{12}\\1222552\overline{)5626632}\\\end{array}
Since 562663 is less than 1222552, use the next digit 2 from dividend 5626632 and add 0 to the quotient
\begin{array}{l}\phantom{1222552)}000000\phantom{13}\\1222552\overline{)5626632}\\\end{array}
Use the 7^{th} digit 2 from dividend 5626632
\begin{array}{l}\phantom{1222552)}0000004\phantom{14}\\1222552\overline{)5626632}\\\phantom{1222552)}\underline{\phantom{}4890208\phantom{}}\\\phantom{1222552)9}736424\\\end{array}
Find closest multiple of 1222552 to 5626632. We see that 4 \times 1222552 = 4890208 is the nearest. Now subtract 4890208 from 5626632 to get reminder 736424. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }736424
Since 736424 is less than 1222552, stop the division. The reminder is 736424. The topmost line 0000004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}