Solve for x
x = \frac{\sqrt{3865} - 56}{3} \approx 2.056374723
x=\frac{-\sqrt{3865}-56}{3}\approx -39.389708056
Graph
Share
Copied to clipboard
-\left(9+x\right)\times 56-\left(x-9\right)\times 56=3\left(x-9\right)\left(x+9\right)
Variable x cannot be equal to any of the values -9,9 since division by zero is not defined. Multiply both sides of the equation by \left(x-9\right)\left(x+9\right), the least common multiple of 9-x,9+x.
\left(-9-x\right)\times 56-\left(x-9\right)\times 56=3\left(x-9\right)\left(x+9\right)
To find the opposite of 9+x, find the opposite of each term.
-504-56x-\left(x-9\right)\times 56=3\left(x-9\right)\left(x+9\right)
Use the distributive property to multiply -9-x by 56.
-504-56x-\left(56x-504\right)=3\left(x-9\right)\left(x+9\right)
Use the distributive property to multiply x-9 by 56.
-504-56x-56x+504=3\left(x-9\right)\left(x+9\right)
To find the opposite of 56x-504, find the opposite of each term.
-504-112x+504=3\left(x-9\right)\left(x+9\right)
Combine -56x and -56x to get -112x.
-112x=3\left(x-9\right)\left(x+9\right)
Add -504 and 504 to get 0.
-112x=\left(3x-27\right)\left(x+9\right)
Use the distributive property to multiply 3 by x-9.
-112x=3x^{2}-243
Use the distributive property to multiply 3x-27 by x+9 and combine like terms.
-112x-3x^{2}=-243
Subtract 3x^{2} from both sides.
-112x-3x^{2}+243=0
Add 243 to both sides.
-3x^{2}-112x+243=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-112\right)±\sqrt{\left(-112\right)^{2}-4\left(-3\right)\times 243}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -112 for b, and 243 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-112\right)±\sqrt{12544-4\left(-3\right)\times 243}}{2\left(-3\right)}
Square -112.
x=\frac{-\left(-112\right)±\sqrt{12544+12\times 243}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-112\right)±\sqrt{12544+2916}}{2\left(-3\right)}
Multiply 12 times 243.
x=\frac{-\left(-112\right)±\sqrt{15460}}{2\left(-3\right)}
Add 12544 to 2916.
x=\frac{-\left(-112\right)±2\sqrt{3865}}{2\left(-3\right)}
Take the square root of 15460.
x=\frac{112±2\sqrt{3865}}{2\left(-3\right)}
The opposite of -112 is 112.
x=\frac{112±2\sqrt{3865}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{3865}+112}{-6}
Now solve the equation x=\frac{112±2\sqrt{3865}}{-6} when ± is plus. Add 112 to 2\sqrt{3865}.
x=\frac{-\sqrt{3865}-56}{3}
Divide 112+2\sqrt{3865} by -6.
x=\frac{112-2\sqrt{3865}}{-6}
Now solve the equation x=\frac{112±2\sqrt{3865}}{-6} when ± is minus. Subtract 2\sqrt{3865} from 112.
x=\frac{\sqrt{3865}-56}{3}
Divide 112-2\sqrt{3865} by -6.
x=\frac{-\sqrt{3865}-56}{3} x=\frac{\sqrt{3865}-56}{3}
The equation is now solved.
-\left(9+x\right)\times 56-\left(x-9\right)\times 56=3\left(x-9\right)\left(x+9\right)
Variable x cannot be equal to any of the values -9,9 since division by zero is not defined. Multiply both sides of the equation by \left(x-9\right)\left(x+9\right), the least common multiple of 9-x,9+x.
\left(-9-x\right)\times 56-\left(x-9\right)\times 56=3\left(x-9\right)\left(x+9\right)
To find the opposite of 9+x, find the opposite of each term.
-504-56x-\left(x-9\right)\times 56=3\left(x-9\right)\left(x+9\right)
Use the distributive property to multiply -9-x by 56.
-504-56x-\left(56x-504\right)=3\left(x-9\right)\left(x+9\right)
Use the distributive property to multiply x-9 by 56.
-504-56x-56x+504=3\left(x-9\right)\left(x+9\right)
To find the opposite of 56x-504, find the opposite of each term.
-504-112x+504=3\left(x-9\right)\left(x+9\right)
Combine -56x and -56x to get -112x.
-112x=3\left(x-9\right)\left(x+9\right)
Add -504 and 504 to get 0.
-112x=\left(3x-27\right)\left(x+9\right)
Use the distributive property to multiply 3 by x-9.
-112x=3x^{2}-243
Use the distributive property to multiply 3x-27 by x+9 and combine like terms.
-112x-3x^{2}=-243
Subtract 3x^{2} from both sides.
-3x^{2}-112x=-243
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-112x}{-3}=-\frac{243}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{112}{-3}\right)x=-\frac{243}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{112}{3}x=-\frac{243}{-3}
Divide -112 by -3.
x^{2}+\frac{112}{3}x=81
Divide -243 by -3.
x^{2}+\frac{112}{3}x+\left(\frac{56}{3}\right)^{2}=81+\left(\frac{56}{3}\right)^{2}
Divide \frac{112}{3}, the coefficient of the x term, by 2 to get \frac{56}{3}. Then add the square of \frac{56}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{112}{3}x+\frac{3136}{9}=81+\frac{3136}{9}
Square \frac{56}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{112}{3}x+\frac{3136}{9}=\frac{3865}{9}
Add 81 to \frac{3136}{9}.
\left(x+\frac{56}{3}\right)^{2}=\frac{3865}{9}
Factor x^{2}+\frac{112}{3}x+\frac{3136}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{56}{3}\right)^{2}}=\sqrt{\frac{3865}{9}}
Take the square root of both sides of the equation.
x+\frac{56}{3}=\frac{\sqrt{3865}}{3} x+\frac{56}{3}=-\frac{\sqrt{3865}}{3}
Simplify.
x=\frac{\sqrt{3865}-56}{3} x=\frac{-\sqrt{3865}-56}{3}
Subtract \frac{56}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}