Evaluate
\frac{1753}{330}\approx 5.312121212
Factor
\frac{1753}{2 \cdot 3 \cdot 5 \cdot 11} = 5\frac{103}{330} = 5.3121212121212125
Share
Copied to clipboard
\begin{array}{l}\phantom{990)}\phantom{1}\\990\overline{)5259}\\\end{array}
Use the 1^{st} digit 5 from dividend 5259
\begin{array}{l}\phantom{990)}0\phantom{2}\\990\overline{)5259}\\\end{array}
Since 5 is less than 990, use the next digit 2 from dividend 5259 and add 0 to the quotient
\begin{array}{l}\phantom{990)}0\phantom{3}\\990\overline{)5259}\\\end{array}
Use the 2^{nd} digit 2 from dividend 5259
\begin{array}{l}\phantom{990)}00\phantom{4}\\990\overline{)5259}\\\end{array}
Since 52 is less than 990, use the next digit 5 from dividend 5259 and add 0 to the quotient
\begin{array}{l}\phantom{990)}00\phantom{5}\\990\overline{)5259}\\\end{array}
Use the 3^{rd} digit 5 from dividend 5259
\begin{array}{l}\phantom{990)}000\phantom{6}\\990\overline{)5259}\\\end{array}
Since 525 is less than 990, use the next digit 9 from dividend 5259 and add 0 to the quotient
\begin{array}{l}\phantom{990)}000\phantom{7}\\990\overline{)5259}\\\end{array}
Use the 4^{th} digit 9 from dividend 5259
\begin{array}{l}\phantom{990)}0005\phantom{8}\\990\overline{)5259}\\\phantom{990)}\underline{\phantom{}4950\phantom{}}\\\phantom{990)9}309\\\end{array}
Find closest multiple of 990 to 5259. We see that 5 \times 990 = 4950 is the nearest. Now subtract 4950 from 5259 to get reminder 309. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }309
Since 309 is less than 990, stop the division. The reminder is 309. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}